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In recent years, the importance of recommendation system has been increasing from the development of informa-
tion technology. One of the important technologies for the recommendation is collaborative filtering. In this study,
we focus on EM-NMF which is an effective model for the collaborative filtering. The approach is based on matrix
decomposition. Generally, evaluation values by users are biased to some number of items. therefore, EM-NMF
tends to learn emphatically to items with many evaluations. The prediction accuracy of evaluation for items with
a small number of evaluation data tends to be undesirable. In this study, we propose a method to assemble two
matrices; (i)predicted evaluation matrix based on the approach of items with many evaluation oriented and (ii)the
matrix based on the approach of items with small number of evaluation obtained. This approach is expected to
improve the prediction accuracy for the evaluation.
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