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Black-box optimization is a problem of optimizing the objective function within the bounds of a given budget for
evaluations. In Black-box optimization, it is generally assumed that the calculation cost for evaluating one solution
is large, so it is important to search efficiently with as few budgets as possible. However, there is a problem that
state-of-the-art black-box optimization methods such as Bayesian optimization and CMA-ES do not consider a
budget. In this paper, we aim to propose an initialization of a search space that takes a budget into account,
dealing with the above problem. We confirm that the proposed method shows good performance by experiments
on the benchmark functions.

1.

Black-box budget B

f : X �→ R

B f(x)

x ∈ X Black-box

f

Black-box 1

budget Black-

box

[Bergstra 11, Ilievski 17, Golovin 17]

[Yang 09]

[Chiba 05]

Generative adversarial networks (GAN)

[Goodfellow 14]

[Lucic 18]

GAN 1

budget

budget

[Brochu 10] CMA-ES [Hansen 03]

state-of-the-art Black-box

budget

budget

budget

budget

budget

: Email:

nomura masahiro@cyberagent.co.jp

2.

X ⊆ R
d (d : )

XS ⊆ X
X

XS

2.1 2.2

budget 2.3

2.4

2.1

Algorithm1 1 budget B

budget Bref 2

3

Algorithm 1

Require: budget B, search space X , dimension number d,

γ, optimizer

1: Bref ← γ ·B
2: XS ← refine search space(d,X , Bref)

3: xbest ← optimize with a given optimizer for the search

space XS until a budget reach B
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Algorithm 2 refine search space(d,X , Bref)

Require: dimension number d, search space X , budget for

refinement Bref

1: K = arg max
k∈N\2Z

{Bk : Bk ≤ Bref}
2: if K ≤ 1 then

3: return X
4: end if

5: initialization : XS = X
6: for i = 1 to d do do

7: randomly select di without replacement from index

set of dimensions

8: divide XS into {Xk}Kk=1 with respect to dimension di
9: k∗ ← arg min

k∈[K]

f(xk), xk is a center point of Xk

10: update the search space : XS ← Xk∗

11: end for

12: return XS
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