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Method in 3D Control Tasks
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In deep rerinforcement learning, it is difficult to converge when the exploration is insufficient or a reward is
sparce. Besides, in a specific tasks, the number of exploration may be limited. Therefore, it is considered effective
to learn in source tasks previously to promote learning in the target tasks. In this research, we propose a method to
train a model that can work well on variety of target tasks with evolutionary algorithm and policy gradient method.
In this method, agents explore multiple environments with diverce set of neural networks to train a general model
with evolutionary algorithm and policy gradient methid. In the experiments, we assume multiple 3D control source
tasks. After the model training with our method in the source tasks, we shows how effective the model is for the
3D Control tasks of the target tasks.
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Algorithm 1

1: Initialize actor π and critic Q with weight θπ and θQ,

respectively

2: Initialize a population of k actors popπ
3: Initialize replay buffers R

4: Define a random number generator r() ∈ [0, 1)

5: for generation = 1, do

6: for actor π ∈ popπ do

7: for all source tasks Ti do

8: Explore Ti using θπ

9: Append transition to replay bufferR respectively

10: end for

11: end for

12: Select the elite actor π based on fitness score fπ
13: Select the replay buffer R based on all fitness scores

fπ
14: Sample a random minibatch of N transitions

(si, ai, ri, si+1) from R

15: Update Q by minimizing the loss

16: L = 1
N
Σi(yi −Q(si, ai|θQ))2

17: Update copied elite actor π using the sampled policy

gradient

18: ∇θπJ ≈ 1
N
Σi∇aQ(s, a|θQ)|s=si,a=ai∇θππ(s|θπ)|s=si

19: Select the (k − 2) actors based on fitness scores fπ
and insert selected actors into next generation’s pop-

ulation pop′π
20: for (k − 2) actors ∈ pop′π do

21: if r() < mutprob then

22: Add noise to θπ

23: end if

24: end for

25: Insert the elite actor into pop′π
26: Insert the copied elite actor pop′π
27: popπ pop′π
28: end for
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