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Some parallel corpora include sentences that disturb learning of machine translation systems. By removing
such noisy sentences like containing many out-of-vocabulary from the training corpus, it is expected to makes
better translations. In this paper, we focus on the sentences containing named entities because most of the
named entities fall into out-of-vocabulary due to low-frequencies. We propose two kinds of filtering methods, using
byte pair encoding and using named entity recognition. By removing noisy sentences from a training corpus on
Japanese-English language pair, BLEU scores improve statistically significantly by 0.5 points in both proposed
methods. Analysis revealed that both our methods overcome the mistakes such as suffix of the noun, determiner,
and sentence lengths.
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[1] 4,030 [2] NERF [3] BPEF
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1: BPE
2 , , ,

here was developed a phase shift magnetic sensor system composed of two sets of coils , amplifiers

, and phase shifts for sensing and output .

1
the phase shift magnetic sensor system consists of two coil , amplifier , and phase shift circuit ,

which consists of two coils for sensing and output .

NERF
a phase shift magnetic sensor system consists of two coils , amplifier , and phase shift circuits for

sensing and output .

BPEF
a phase shift magnetic sensor system consists of two coils , amplifiers and phase shift circuits for

sensing and output .

, ,V10=11.8V,V90=18V

the electro optical property obtained was V10 = 11.8V and V90 = 18V .

2 as a result , we obtained V10 = 11.8 V , V90 = 18V as an electrooptic property .

NERF as a result , the electrical optical properties were obtained with V10 = 11.8 V and V90 = 18V .

BPEF as a result , V10 = 11.8V , V90 = 18V were obtained as the electrical optical properties .
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2:
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