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Symbolic reasoning is an important ability of the brain. Symbolic structures can be represented as distributed
representations with binding operations. We aim to extend a conventional model for word or phrase level reasoning
to sentence level reasoning and to find the optimal distributed representation for processing structural representa-
tions such as languages in a biological brain model under noise. We construct a spiking neuron model which can
answer answer questions about a group of sentences. We employed Holographic Reduced Representations (HRRs)
to prevent the increasing of vector dimensionality for binding operations. Experimental results show that our model
can select an appropriate sentence for question-answering even in similar sentences. Experiments suggest that a
noise-robust structural representations for languages can be realized by changing the role vector depending on the
depth of the structure and by embedding a verb into a role vector and removing the predicate part.
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“The dog chases the boy.”

S1 = Agent ∗Dog + V erb ∗ Chase+Object ∗Boy (5)

∗
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⊗
“The

dog chases the boy who has a ball.”

S2 = Agent ∗Dog + V erb ∗ Chase+Object∗
(Agent ∗Boy + V erb ∗ Play +Object ∗Ball)
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Table 1: Agent ∗Dog + V erb ∗Chase+Object ∗Boy

text input cue input question

0 < t < 0.2 Agent ∗Dog + V erb ∗Chase+Object ∗Boy None None None

0.2 < t < 0.4 None V erb ∗Chase+Object ∗Boy Agent Dog

0.4 < t < 0.6 None Agent ∗Dog + V erb ∗Chase Object Boy

(a) a (b) b

(c) c (d) d h

Figure 2:
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Figure 3:
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