
MLSH

A Sub-policy Pruning Method for Meta Learning Shared Hierarchies

Qing HONG ∗1∗2 Yusuke TANIMURA∗2∗1 Hidemoto NAKADA∗2∗1

∗1
University of Tsukuba

∗2
Artifical Intelligence Research Center, National Institute of Advanced Institute of Technology

Meta Learning Shared Hierarchies(MLSH) is a example of Hierarchical Reinforcement Learning.n Assuming some
task distribution and reusing the knowledge learned on the preceding tasks, it aims to rapidly adjust to new tasks.
It divides the policy into several sub-policies and master policy which choose one of the sub-policies, expecting each
sub-policy is responsible for each sub-goal in the task. One of the drawbacks of this approach is that, in general,
it is not possible know the number of sub-goals in unseen task distribution, hence, the number of sub-policies.
With improper number of sub-policies, the performance of MLSH is degraded. To solve this problem, we propose
a method to locate the proper number of sub-policies by pruning excessive sub-policies. The proposed method
save resources and reduce the time the algorithm to converge. We test the method using 2D-bandit problem and
demonstrate the effectiveness.

1. Introduction

Reinforcement learning takes long time to solve tasks

with sparse rewards. Hierarchical reinforcement learning

(HRL) is an approach to solve this problem reusing

sub-policies learned on preceding similar tasks [Bakker 04].

It could improve the exploration efficiency [Simsek 04] or

learning efficiency [Bacon 16].

Traditional HRL requires hand-crafted sub-goals to solve

specific tasks with pre-trained sub-policies. The agent learn

a policy to take action to receive an extrinsic reward first,

then separate this action into several basic actions. With

this approach it is difficult to obtain good performance in

practical hierarchical problems. On the other hand, finds a

useful sub-policies first and use such policies to solve sparse-

reward problems is more efficient in practical hierarchical

problems. Such methods are called meta learning [Finn 17].

Meta learning has a problem that it can hardly dis-

cover useful sub-policies for unseen problems. MLSH (Meta

Learning Shared Hierarchies) [Frans 18] is a HRL algorithm

which focuses on these problems. MLSH tries to solve a

wide variety of tasks by using prior knowledge and primitive

policies. The goal is to rapidly reach high reward on new

tasks drawn from a certain task distribution. When related

tasks contains multiple sub-goals, MLSH pre-trains mul-

tiple sub-policies correspond to the sub-goals and update

them accordingly. However, in some complicated tasks, the

numbers of goals are unpredictable. Too many sub-policies

and too few sub-policies degrade the performance of MLSH

in each way. To solve this problem, we propose a method

to locate the proper number of sub-policies by pruning the

excessive sub-policies.

2. Background

2.1 Meta Learning Shared Hierarchies
Meta Learning Shared Hierarchies is an end-to-end meta-

learning approach that uses prior knowledge to solve unseen

tasks.

Master policy

Environment
Observation

actived

Sub policy

Master action

action

Observation

Figure 1: The Overview of MLSH

The goal of MLSH is to rapidly reach a high reward with

similar tasks. By training master policy to activate one of

the sub-policies that correspond to sub-goals, MLSH utilize

the prior knowledge to solve tasks that share similar sub-

goals. That is to say, MLSH create a probabilistic policy

called master policy whose action is to choose one of the

sub-policies. Master policy starts with randomly-initialized

status and will be fine-tuned to each task. Then we optimize

the probabilistic parameter based on the total reward from

sub-policies and the master’s action. At last, we update

sub-policies and master policy jointly.

2.2 Simple 2D-Moving Bandits environment
We use a simple problem called 2D-moving bandid

throughout this paper as an example problem. This is a

simple bandit problem which contains different potential

goals p(Figure 2). This environment generates one dots as

our agent. Then randomly create two dots, and each dot

is considered a potential goal. Our agent’s goal is to reach

them as close as possible. 2D-bandit problem is similar

to the N-armed bandit problem. Each slot (dot) have dif-

ferent repay (reward depends on the rate of repaying and

distance), our agent’s goal is to find the highest total re-

ward. In each iteration the position of dot and repay rate

randomly be altered, our agent also needs to do such things

again: 1. approach the ball. 2. confirm the reward and

optimal the goal direction.

1

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

4Rin1-10

Figure 2: Simple 2D-Moving bandit problem: green dot de-

notes our agent, and other dots denote our potential goals.

Master policy

Environment
Observation

actived

Sub policy

Master action

action

Observation

Hierarchies manager

discarded

Figure 3: The Architecture of the proposed method, SPPM

create hierarchies manager to formulate the policy which

helps agent to locate the proper number of sub-policies.

This environment is easy to simplest hierarchical learning

problem, and we will use it to help our research.

3. Sub Policy Pruning Method

We propose a method called Sub Policies Pruning Method

(SPPM). The goal of SPPM is to find the proper number of

sub-policies in the environment which contains an uncertain

number of sub-goals. SPPM starts with enough number of

sub-policies, observes the behavior of each sub-policy, and

determines the proper number of sub-policies. A module

called hierarchies manager is responsible for this procedure

(Figure 3). With this method, we can save resources and

improve learning speed.

Figure 4 shows the algorithm of SPPM. When the en-

vironment is unseen, and we do not know the number of

sub-goals, we use SPPM to speed up the training. SSPM

initialize an excessive number of sub-policies φ. To observe

the behavior of each sub-policy our agent need a warm-up

trial T to train the φ. T subjects to the complexity of the

environment and it provided by our hierarchies manager.

After warm-up trials, each sub-policy have a specific ten-

dency, so we can remove the sub-policies with low-activity

and replace the role of them with more active ones. In the

next prune trial P , SPPM record the activated times A of

each sub-policy selected by master-policy. If the A of φ

lower than PL (Pruning threshold), the sub-policy will be

pruned and will not be activated in the rest of trials. PT is

provided by hierarchies manager based on the environment.

Sub Policies Pruning Method in MLSH

initialize φ

repeat

Initialize θ

Sample task M ∼ PM

For t=0,1,.....T (Test trial) do

Update φ to maximize expected return in W

Update θ to maximize expected return in U

end for

For P=0,1,.....P (Prune trial) do

Update φ to maximize expected return in W

Update θ to maximize expected return in U

If (φk|A(Activated times of φk)) < PT:

Prune φk

end if

end for

until convergence

Figure 4: The algorithm of SPPM.

3.1 When SPPM Conduct Pruning Method?
To estimate the actual value of each sub-policy , it is nec-

essary to give enough time steps to train the sub-policies

until they began to have redundancy. When the environ-

ment becomes complicated, the MLSH agent cost more time

to get convergence. Hence, the pruning time point depends

on the complexity of the environment. On the other hand,

from the resource consumption point of view, we need to

prune the unnecessary sub-policy before the convergence.

Figure 5 is the heat-map of similarity by using similarity

equation:

cos(A,B) =
AB

‖A‖‖B‖ =

∑n

i=1
AiBi√∑n

i=1
(Ai)2

√∑n

i=1
(Bi)2

(1)

The x-axis and y-axis denote sub-policies. Each cell

stands for the ’similarity’ of the corresponding two sub-

policies. Larger value means that the two sub-policies be-

have similarly. With the training goes on, some of the sub-

policies converge into the same behavior. Such sub-policies

can be marked as redundant and one of them could be safely

removed, since the other will fill in the role. We find that the

behavior convergence after 50 trials. Conducting a pruning

method after that may be a good time point for this case.

3.2 How SPPM Conduct Pruning Method?
Define the pruning rule to efficiently prune the redundant

policies is a challenging problem. We found that pruning

rule based on recent activated times is easier to obtain bet-

ter performance (using moving average).

Find the best pruning threshold on a particular task

is the second problem we need to consider. Pruning too

much sub-policies leads to counterproductive effect. Figure

6 shows the moving average of activation ratio of each sub-

policies. From the graph, we could figure out that pruning

sub-policies that have activation ratio less than 50% or 60%

of the most activated sub-policy will be moderate. Based on

this observation, we define two threshold; aggressive thresh-

old (50%) and conservative threshold (60%).

2

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

4Rin1-10

Figure 5: The heatmap of similarity using 10 sub-policies,

the x-axis and y-axis denotes different sub-policies. the

number denotes the similarity compare with 2sub-policy.

The bigger the number is, the similar actions it take. From

50 trials some of the sub-policy start to get redundant.

Figure 6: The result of 8sub-policies 2sub-goals. X-axis

denotes the trials and Y-axis denotes the activation ratio.

The red line denotes aggressive pruning threshold: less than

50% of highest activation ratio. The green line denotes

conservative pruning threshold: less than 60% of highest

activation ratio

4. Evaluation

To evaluate the proposed method, we conducted experi-

ments using the 2D-moving bandits shown in 2.2 with only

one sub-goal is designated as the real goal (other goals have

0 repay rate). Number of sub-goal is 2, hence the ideal num-

ber of sub-policies is also 2. As the parameter of SPPM,

we employed two parameters; namely, 1) pruning thresh-

old, 2) pruning start time. For pruning threshold, we tried

aggressive (50%) and conservative (60%) setting. For start

time, we tried 50 trials and 150 trials. After 50 trials is the

time when the sub-policy behavior starts to converge. After

150 trials is the time just before whole algorithm reach the

convergence. We started with 8 sub-policies.

Figure 7: Comparison of aggressive pruning strategy with

conservative pruning strategy with 8 sub-policies 2 sub-

goals.

Figure 8 shows the results with 150 trials start and Fig-

ure 9 shows the results with 50 trials start. Left diagrams

show the aggressive case while the right show the conser-

vative case. Upper diagrams show the activated ratio of

each sub-policies and lower diagrams show the reward. The

blue vertical lines denote the trial we successful prune the

sub-policies. When we start pruning after 150 trial (Fig-

ure 8), with aggressive pruning strategy, we successfully

pruned 4 sub-policies at 150 trial and 1 sub-policy at 202

trial. With conservative pruning strategy, we could prunes

3 sub-policies at 297, 321 and 346 trial.

When we start pruning after 50 trial (Figure 9), with

aggressive pruning strategy, we pruned 5 sub-policies at 27,

28, 32, 33, 38. With conservative strategy, we could prune

1 sub-policy at 153 trials

Figure 7 shows the comparison of different pruning strate-

gies. Aggressive pruning method seems to have better per-

formance than the conservative one. However, we have to

note that there is a certain risk to prune too much sub-

policies. For simple environment (the number of sub-goals

is much smaller than number of sub-policies), starting to

prune sub-policies at the early stage seems better. Aggres-

sive pruning strategy seems to be better than conservative

one.

5. Conclusion

In this paper, we proposed Sub Policies Pruning Method

that locate proper number of sub-policies by starting with

enough number of sub-policies and pruning the low-activity

sub-policies during the training. We applied the proposed

method to the 2D-bandid problem and confirmed the effec-

tiveness of the method.

One of the problem with the proposed method is the tun-

ing of the hyper parameters, namely, pruning threshold and

pruning start time. Finding methods to automatically ad-

just these parameters is our future work.

3

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

4Rin1-10

Figure 8: Evaluation Results: starts 150 trials. Left: aggressive, Right: conservative.

Figure 9: Evaluation Results: starts 50 trials. Left: aggressive, Right: conservative.

Acknowledgement

This paper is based on results obtained from a

project commissioned by the New Energy and Indus-

trial Technology Development Organization (NEDO). This

work was supported by JSPS KAKENHI Grant Number

JP16K00116.

References

[Bacon 16] Bacon, P., et al.: The Option-Critic Architec-

ture, in CoRR, p. abs/1609.05140 (2016)

[Bakker 04] Bakker, B., et al.: Hierarchical reinforcement

learning with subpolicies specializing for learned sub-

goals, in Nural Networks and Computational Intelligence,

p. abs/1703.03400 (2004)

[Finn 17] Finn, C., et al.: Model-Agnostic Meta-Learning

for Fast Adaptation of Deep Networks, in CoRR, p.

abs/1703.03400 (2017)

[Frans 18] Frans, K., et al.: Meta Learning Shared Hierar-

chies, in International Conference on Learning Represen-

tations (2018)

[Simsek 04] Simsek, O., et al.: Using relative novelty to

identify to identify useful temporal abstractions in rein-

forcement learning, in ICML (2004)

4

The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019

4Rin1-10

