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We propose a task to identify a product name from an EC page title. On EC pages, sellers need to design their
posts to increase the visibility of their products in search results. One of the common techniques is including extra
information to the title of their product page. However, adding many keywords can result in such a complicated
page title that it is hard for buyers to distinguish a product name from the title. Therefore, extracting product
names is important, yet has some challenges especially when titles are in Japanese. (1) Most titles do not have
standard grammatical structures. (2) Diverse characters, such as Kanjis, Kanas, alphanumerics, and symbols often
appear in a single title. These make models hardly handle the boundaries of words and lead to incorrect learning.
In this work, we create a corpus and evaluate several conventional approaches for basic analysis. The results show
that this task is still challenging; an existing approach for named entity recognition, which performs very well at
some open datasets, can only achieve 23.0 of the F1 score with our dataset.
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