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The purpose of this paper is to confirm an applicability of the structural optimization methods by reinforcement learning. 
First, the outline of the developed application is explained. This application takes advantage of the features of smart devices 
as to anyone from adults to children can enjoy it. Secondary, the detail of optimization method by reinforcement learning is 
explained. And then, by proposed method, optimization analyses are conducted. Finally, the optimization result are compared 
with the result by the traditional method, and the applicability of proposed methods is examined.  
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Double DQN[Hasselt 2015]
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