General Session | General Session | GS-11 Al and Society

[3L1-GS-11]AI and Society

座長:木村 大毅(IBM) [現地]

Thu. Jun 8, 2023 9:00 AM - 10:40 AM Room L (C2)

10:00 AM - 10:20 AM

[3L1-GS-11-04]Sample-Efficient De Novo Chemical Design with Latent Reconstruction-Aware Variational Autoencoder

Onur Boyar¹, Kazuki Iwata², Hiroyuki Hanada³, Ichiro Takeuchi^{1,3} (1. Nagoya University, 2. Nagoya Institute of Technology, 3. RIKEN)

Keywords: Variational Autoencoders, De Novo Chemical Design, Bayesian Optimization
Generative models have a wide range of applications in de novo chemical design. A common choice of
generative model for de novo chemical design tasks is Variational Autoencoders, which convert the highdimensional discrete representation of chemical compounds into real-valued continuous vector
representations using their encoder network. Continuous representations allow us to use optimization
techniques to obtain chemical compounds with desired properties. However, due to the costly nature of
evaluating the properties of the generated chemical compounds, the sample efficiency of the optimization
process is crucial. The general approach is to use Bayesian Optimization in the latent space of the Variational
Autoencoder model, which has many challenges yet to be tackled, such as the quality and diversity of the
generated chemical compounds. In our study, we propose an approach to improve the sample efficiency of
the optimization process. We propose a novel generative model, the Latent Reconstruction-Aware Variational
Autoencoder, and incorporate it into the Latent Space Bayesian Optimization framework. Our results show
that the proposed approach can improve the quality and diversity of the generated chemical compounds.