16a-D4-5

Enhanced infrared photoluminescence from Ge_{1-x}Sn_x alloys

Wen-Yao Hsieh¹, Yu-Hao You¹, Kun-Mao He¹, Yu-Hsiang Peng¹, Guo-En Chang^{1,*}, Henry H. Cheng²

¹ Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Taiwan, ROC.

² Center for Condensed Matter Sciences, National Taiwan University, Taiwan, ROC.

E-mail: imegec@ccu.edu.tw

1. Introduction

 $Ge_{1-x}Sn_x$ alloys have recently attracted great research attention for new optoelectronic devices, especially efficient Si-based light emitters [1]. While Ge is an indirect semiconductor, its direct conduction band lies just 136.5 meV above the lowest conduction band at *L* pint in the Brillouin zone. This energy difference can be greatly reduced by alloying Ge with Sn, another group-IV element, leading to remarkably improved light-emitting efficiency. With a Sn composition of ~7%, direct-bandgap Ge_{1-x}Sn_x alloys can be created [2] for laser gain media. In this paper, we present a study of photoluminescence (PL) from strained Ge_{1-x}Sn_x films on Ge virtual substrate (VS) on Si wafer. The transparent carrier densities are also predicted.

2. Sample structures and PL characterization

The Ge_{1-x}Sn_x film was grown on a Ge-buffered Si (100) substrate by molecular beam epitaxy (MBE) at low temperature. The structure consists of (a) a 100 nm Ge layer grown at 350°C, (b) a 100 nm Ge layer grown at 500°C, (c) a 100 nm Ge layer grown at 350 °C, and (d) a 250 nm Ge_{1-x}Sn_x layer grown at 150°C. Post rapid thermal annealing (RTA) at 500°C was performed for 30 seconds for all samples to improve the crystal quality. x-ray measurements reveal that the Ge VS is fully strain-relaxed, and the Ge_{1-x}Sn_x film is nearly fully strained to the Ge VS.

Figure 1 shows the PL spectra for the $Ge_{1-x}Sn_x$ samples measured at room temperature. For Ge, a peak at 1550 nm is attributed to the direct bandgap emission, while a shoulder at lower-energy is due to the indirect interband transitions. When the Sn composition increases to 0.5%, the direct emission peak shifts to 0.756 eV (1640 nm) due to the reduced direct bandgap. In addition, the direct PL peak intensity slightly increases due to the reduced Γ -*L* energy separation. When the Sn composition increases further to 2.5%, the direct PL peak moves to 0.712 eV (1740 nm) with a further enhancement in PL peak intensity. The insert in Fig. 1 shows the integrated PL intensities for the samples. The integrated PL intensity enhancement can be up to 1.45 times with a Sn composition of 2.5%.

Figure 2 shows the calculated transparent carrier density (n_{tr}) for the Ge_{1-x}Sn_x-on-Ge structure as a function of Sn composition. The theoretical model and parameters can be found in Refs. [3] and [4]. For pure Ge, a large carrier density of 9.75×10^{19} cm⁻¹ is necessary to reach the transparent condition. As the Sn composition increases, n_{tr} is reduced continuously. With a Sn composition of 2.5%, n_{tr} is significantly reduced to $8.41 \times 10^{19} \text{ cm}^{-1}$. Above this density, important optical gain can be achieved.

Figure 1. Measured room-temperature PL spectra of the $Ge_{1-x}Sn_x$ -on-Ge samples.

Figure 2. Calculated transparent carrier density for the $Ge_{1-x}Sn_x$ -on-Ge film as a function of Sn composition.

4. Conclusions

We have presented room-temperature PL from $Ge_{1-x}Sn_x$ -on-Ge films. The photoluminescence intensity is enhanced with increasing Sn composition due to the reduced Γ -*L* energy separation, leading to a significant reduction in transparent carrier density. Those results indicate that $Ge_{1-x}Sn_x$ alloys are promising for efficient infrared lasers for bio-medical and gas sensing applications.

Acknowledgements

This work was supported by the National Science Council of Taiwan under the contract No. NSC 101-2221-E-194 -028. **References**

- R. Soref, J. Kouvetakis, J. Tolle, J. Menendez and V. D'Costa, J. Mater. Res. 22(12), 3281 (2007).
- [2] R. Chen, H. Lin, Y. Huo, C. Hitzman, T. Kamins and J. S. Harris, Appl. Phys. Lett. 99, 181123 (2011).
- [3] G. E. Chang, S. W. Chang and S. L. Chuang, IEEE J. Quant. Electron. 46, 1813 (2010).
- [4] G. E. Chang and H. H. Cheng, J. Phys. D 46, 065103 (2013).