太陽電池用多結晶シリコンの極低温遠赤外吸収測定

Far-infrared Absorption Measurements of Multicrystalline Silicon

for Solar Cells at Low Temperature 明治大学 ¹. 神奈川県産業技術センター²

○佐藤 邦孝^{1,2},宇野 匠^{1,2},小椋 厚志¹,小野 春彦^{1,2}

Meiji Univ. ¹, Kanagawa Ind. Tech. Center ² °K. Sato^{1, 2}, T. Uno^{1, 2}, A. Ogura¹ and H. Ono^{1, 2}

E-mail: ce31042@meiji.ac.jp

[はじめに]キャスト法によって作製した多結晶シリコン(mc-Si)には、結晶成長時に軽元素不純物が混入する。酸素は格子間酸素(Oi)として、窒素は NN や NNO などの複合体として存在する。この酸素や窒素の別形態として、酸素がサーマルドナー(TD)を、窒素と酸素がシャロー・サーマルドナー(STD)をそれぞれ形成することが知られている。TD と STD は電気的に活性であり、比較的浅いドナー準位を形成し、mc-Si 基板の電気特性に影響を与える。そこで本研究では、極低温遠赤外吸収法を用いて、太陽電池用 mc-Si インゴット中の TD と STD を検出し、その分布を測定した。

[実験方法]キャスト法で作製した直径 110 mm, 高さ 90 mm の n 型 Si インゴット(P ドープ)から、結晶成長方向と平行に試料を切り出し、 $5\times5\times2$ mm に加工した。試料を約 10 K に冷却し、FTIR を用いて分解能 0.5 cm⁻¹ でドナーによる電子遷移の吸収を測定した。

[結果]本測定で得られた遠赤外吸収スペクトルの一例を Fig.1 に示す。270 - 350 cm⁻¹付近の強い吸収はドーパントである P によるものである。 TD は 400 - 500 cm⁻¹、STD は 200 - 270 cm⁻¹に複数のピークが現れる。それらのピークの内、代表的な 488 cm⁻¹(TDD2, $2p_{\pm}$)と 240 cm⁻¹(STD, $2p_{\pm}$) のピーク強度をインゴットの結晶成長方向にプロットしたものを Fig.2 に示す。

電子遷移による TD と STD のピーク強度を、室温で測定した Oi (1107 cm $^{-1}$)と NN (963 cm $^{-1}$)の 振動モードによるピーク強度と比較する。酸素の複合体である TD は、インゴット中央付近で Oi よりも急激に減少していた。STD は窒素を含む複合体であるが、NN のようにインゴット上部にいくほど増加する分布ではなく、むしろ酸素複合体である TD のようにインゴット上部にいくほど減少していた。このように TD と STD は、構成する元素の別形態である Oi と NN の分布を直接 反映していないことがわかった。

結晶をご提供頂きました豊田工業大学の関係各位に感謝致します。

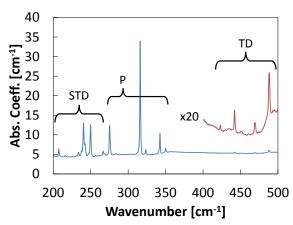


Fig. 1 Far-infrared Spectra at LT

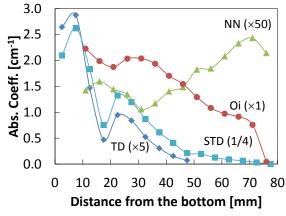


Fig. 2 Defects and impurities distribution