16p-B4-4

β-Ga₂0₃結晶における青色発光強度と抵抗率の相関

Correlation between blue luminescence intensity and resistivity in β-Ga₂O₃ crystals

東京高専¹, 工学院大², 情通機構³, タムラ製作所⁴, 光波⁵

^o尾沼猛儀¹⁻³,藤岡秀平²,山口智広²,東脇正高³,佐々木公平^{3,4},増井建和⁵,本田徹² TNCT¹,Kogakuin Univ.²,NICT³,Tamura Corp.⁴,Koha Co.,Ltd.⁵

^oT. Onuma¹⁻³, S. Fujioka², T. Yamaguchi², M. Higashiwaki³, K. Sasaki^{3,4}, T. Masui⁵, and T. Honda² E-mail: onuma@tokvo-ct.ac.jp

[はじめに]単斜晶型構造の酸化ガリウム (β-Ga₂O₃) はバンドギャップエネルギーが 4.8~4.9eV であり、GaN や SiC よりも大きく、単結晶作製も比較的容易なため、高耐圧、低損失のパワーデバイスを低コスト・低エネルギーで製造できる材料として注目を集めている[1]。また、バンドギャップの波長は 260nm 以下であるため、遠紫外線領域の発光・受光素子[2,3]への応用も期待される。本講演では、融液成長により製作したβ-Ga₂O₃ 結晶のカソードルミネセンス (CL) 特性を調査し、青色発光強度と抵抗率の関係について考察した結果を報告する。

[実験] 測定に用いた試料は、FZ 法および EFG 法により成長した単結晶基板である[4,5]。無添加の結晶の他に、Si、Mg が添加された基板の測定を行い比較した。無添加結晶に含まれる残留 Si 濃度は、 2×10^{16} ~ 5×10^{17} cm⁻³ であり、抵抗率 ρ は mid- 10^{-1} Ω·cm 程度[5] である。Si を濃度 4×10^{18} ~ 2×10^{19} cm⁻³ で添加した結晶は ρ =low- 10^{-2} Ω·cm 程度[5] であり、Mg を濃度 4×10^{18} ~ 2×10^{19} cm⁻³ で添加した結晶は ρ =low- 10^{-2} Ω·cm 程度[5] であり、Mg を濃度 4×10^{18} ~ 2×10^{19} cm⁻³ で添加した結晶は ρ =low- 10^{-2} Ω·cm 程度[5] であり、Mg を濃度 4×10^{18} ~ 2×10^{19} cm⁻³ で添加した結晶は ρ =low- 10^{-2} Ω·cm 程度[5] であり、Mg を濃度 4×10^{18} ~ 2×10^{19} cm⁻³ で添加した結晶は ρ =low- 10^{-2} Ω·cm 程度[5] であり、Mg を濃度 4×10^{18} ~ 2×10^{19} cm⁻³ で添加した結晶は ρ =low- 10^{-2} Ω·cm 程度[5] であり、Mg を濃度 4×10^{18} ~ 2×10^{19} cm⁻³ で添加した結晶は ρ =low- 10^{-2} Ω·cm であり

[結果] 図に CL スペクトルの温度依存性をまとめる。いずれの結晶からもバンド端発光は観測 されず、3.2~3.6eV に紫外線発光帯(UV)、2.8~3.0eV に青色発光帯(BL)、2.4eV 付近に緑色発

光帯(GL)が観測された。低温では UV 発光が支配的で あるが、昇温に伴う発光強度の変化に、次のような傾向が 観られた。図(a)に示す Si 添加結晶では昇温により UV 発 光強度が減少するが、BL と GL 発光は現れなかった。図 (b)、(c)に示す無添加と Mg 添加結晶では、昇温により UV 発光強度が減少し、BL と GL 発光強度が増加した。青色 発光の強度は Si 添加試料が最も小さく、無添加結晶、Mg 添加結晶の順に大きくなった。得られた結果は、*p*の増加 傾向と同様な傾向を示した。

[考察] 青色発光は、深いドナー準位と深いアクセプター 準位間のペア (DAP) 発光が起源であると考えられており [6,7]、深いドナー準位は酸素空孔 (V₀) や格子間 Ga など の真性点欠陥が、深いアクセプター準位は Ga 空孔や Mg アクセプターがそれぞれ関与していると考えられている。 これらの中で、V₀の形成エネルギーはフェルミレベルエ ネルギー (E_F)の減少に伴い小さくなる[8]。 の増加は E_F の減少を示唆すると共に V₀ 濃度の増加を示唆する。V₀ 濃 度の増加傾向と BL 強度の増加傾向に一致が観られたこと から、青色発光には V₀が関与していると考えられる。

[謝辞]本研究の一部は科研費基盤研究(C)(#25390071、 #21560361)の援助を受けた。

[参考文献] [1] M. Higashiwaki *et al.*, APL **100**, 013504 (2012). [2] Y. Kokubun *et al.*, APL **90**, 031912 (2007). [3] T. Oshima *et al.*, APEX **1**, 011202 (2008). [4] E. G. Villora *et al.*, JCG **270**, 420 (2004). [5] K. Sasaki *et al.*, APEX **5**, 035502 (2012). [6] T. Harwig and F. Kellendonk, J. Solid State Chemistry **24**, 255 (1978). [7] L. Binet and D. Gourier, J. Phys. Chem. Solids **59**, 1241 (1998). [8] J. B. Varley *et al.*, APL **97**, 142106 (2010).

Figure Temperature dependent CL spectra of (a) Si-doped, (b) undoped, and (c) Mg-doped β -Ga₂O₃ crystals.