16p-C15-11

GaAs 量子井戸中をドリフトする電子スピンの電気的制御

Electrical control of drifting electron spins in GaAs quantum well NTT 物性基礎研¹,東北大工² ^o国橋 要司¹,眞田 治樹¹,後藤 秀樹¹,小野満 恒二¹, 好田 誠²,新田 淳作²,寒川 哲臣¹

NTT BRL¹, Tohoku Univ.², [°]Yoji Kunihashi¹, Haruki Sanada¹, Hideki Gotoh¹, Koji Onomitsu¹, Makoto Kohda², Junsaku Nitta², Tetsuomi Sogawa¹

E-mail: kunihashi.y@lab.ntt.co.jp

能動的に動作するスピントロニクスデバイスを実現するためには、電子スピンを電気的に輸送 し、その回転を制御する必要がある。近年、半導体ヘテロ構造中において、Rashba スピン軌道相 互作用を用い、電子スピンの向きを電気的に制御できるという報告がなされた[1]。電子スピンの デバイス応用に向けた次のステップとして、半導体中をドリフトする電子のスピンダイナミクス を電気的に制御することが極めて重要となる。本研究ではゲート電極を備えた GaAs 量子井戸中 の電子スピンをバイアス電圧によってドリフトさせ、その時のスピンダイナミクスのゲート電圧 依存性を時間・空間分解 Kerr 回転法によって調べた。空間分解 Kerr 回転信号から、ドリフト電子 の空間的な回転周波数がゲート電圧によって制御可能であることを確認した。

試料として量子井戸幅 25 nm のAl_{0.3}Ga_{0.7}As / GaAs (Quantum well) / Al_{0.3}Ga_{0.7}As HEMT 構造に半 透明の Au ゲート電極および InSn オーミック電極を作製したものを用いた。まず試料表面の固定 した位置にポンプ光として円偏光 (スポット径 ~6 μ m)を照射することでスピン偏極電子を生成 した。次にバイアス電圧によってドリフトする電子スピン密度の空間分布をプローブ光である直線偏光 (スポット径 ~2 μ m)の Kerr 回転角を測定することで計測した。

図1に光励起スピンが[110]方向にドリフト運動する際の歳差運動の空間プロファイルを示す。 すべてのゲート電圧において、100µm 以上にわたって電子スピンの歳差運動が観測された。Kerr 回転角 $\theta_{\rm K}$ は一次元のドリフトスピンモデル $\theta_{\rm K}(d) = A \exp(-d/l_{\rm S}) \cos(\kappa d)$ (d:距離, $l_{\rm S}$:スピン緩和長,

κスピンの空間周波数)によってよく説明できることがわかる。また、ゲート電圧を負に印加していくと、歳差運動の周期が徐々に長くなっていることがわかる。k・p 摂動に基づく理論計算[2]より、本研究で用いた GaAs 量子井戸は負のゲート電圧印加によって Rashba スピン軌道相互作用が減少することがわかっており、実験的に観測されたスピン歳差運動のゲート電圧依存性を定性的に説明した。一方、Rashba および Dresselhaus スピン軌道相互作用が共存する条件下において、スピンの歳差運動速度が結晶方位に大きく依存しており、有効磁場の異方性が顕著となることを確認した。

本研究の一部は科研費(24686004,23310097)の 補助を受けた。

T. Bergsten *et al.*, Phys. Rev. Lett. **97**, 196803 (2006).
Th. Schäpers *et al.*, J. Appl. Phys. **83**, 4324 (1998).

図1 様々なゲート電圧におけるドリフト電 子スピンの空間プロファイル。プロットは実 験結果を,実線はモデル式のフィッティング 結果を示している。