様々な添加剤を有する複合溶液を用いて作製した活性層を有する 有機薄膜太陽電池の特性評価

Characteristics of the organic solar cell fabricated by the active layer prepared with the composite material mixed with various additive

愛知工大.○伊藤 允一. 落合 鎮康

Aichi Inst of Tech, [°]Masakazu Ito, Shizuyasu Ochiai

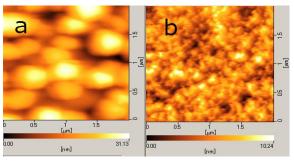
E-mail: v12704vv@aitech.ac.jp

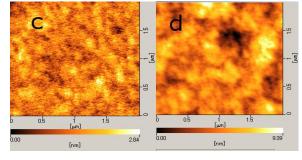
1.はじめに

有機薄膜太陽電池はウェットプロセスで容易に作製することができるため、軽量化、低コスト化の可能性を有する。しかし、現状の電力変換効率はシリコンに比し低く、11%の報告もあるが有機太陽電池の実用化の目安である15%には達していない。

本研究では、有機薄膜の相分離が電力変換効率と密接な関係が報告されている¹⁾、1.8-Diiodooctane(DIO)、1-Chloronaphthalene(CN)をポリマー材料に添加して有機薄膜太陽電池を作製し、その相分離構造(ナノ構造)の評価を行った。

2.実験方法


製膜は全てスピンコート法で行った。ITO 基 板上に PEDOT: PSS を製膜(回転数:


5000rpm、回転時間:30sec) し、その後 PT B7 [9mg]/PC₇₁BM[13.5mg]混合溶液 (2w/w%/2 w/w%クロロベンゼン[1ml] 中、)に DIO を 3w/w%と CN を 10w/w%を添加して作製した。製膜は回転数 700rpm、回転時間:60sec で行なった。AFM で表面観察を行い活性層の相分離構造を評価した。

3.実験結果及び検討

Fig.1(a)は PTB7/PC $_{71}$ BM 薄膜の AFM 像である。Fig.1(b)は PTB7/PC $_{71}$ BM に DIO を 3w/w%添加した薄膜の AFM 像である。表面形態を比較すると凝集体が微細化することが分かる。これは凝集体がナノ構造化することを示唆する。Fig.1(c)は PTB7/PC $_{71}$ BM に CN を 3w/w%添加した薄膜の AFM 像である。Fig.1(b)に比し表面の高低差が大幅に小さくなっている。Fig.1(d)は PTB7/PC $_{71}$ BM に DIO を 3w/w% と CN を 3w/w%

添加した薄膜の AFM 像である。DIO と CN を添加したことにより、Fig1(c)に比しさらにナノ構造化が進展する。これらは添加剤の添加により作製された活性層がナノ構造体形成に重要な役割を果すことを示唆し、電力変換効率向上に有効な手段であることを示唆する。

 $\label{eq:fig.1} Fig.1 AFM images of (a) PTB7/PC71BMfilm, \\ (b)PTB7/PC71BM/DIO3w/w%film, \\ (c)PTB7/PC71BM/DIO3w/w%film, \\ (d)PTB7/PC71BM/DIO3w/w%/CN3w/w% film \\$

参考文献

1) Santhakumar Kannappan , Kumar Palanisamy,, Jiro Tatsugi, Paik-Kyun Shin, Shizuyasu Ochiai," Fabrication and characterizations of PCDTBT: PC₇₁BM bulk heterojunction solar cell using air brush coating method", J Mater Sci, DOI 10.1007/s10853-012-7010-1