Ni/Fe 積層触媒を用いた CNT 合成 Growth of Carbon Nanotubes using Ni/Fe Multi-layered Catalysts 高知工科大¹,高知工科大ナノテク研² ⁰小路 紘史¹,石本 光輝¹,古田 寛^{1,2},八田 章光^{1,2} Kochi Univ. Technol.¹, Inst. Nanotechnol., Kochi Univ. Technol.², [°]Hirofumi Koji¹, Koki Ishimoto¹, Hiroshi Furuta^{1,2}, Akimitsu Hatta^{1,2} E-mail: 176002a@gs.kochi-tech.ac.jp

【はじめに】CNT (Carbon Nanotubes) フォレスト の電気伝導度や熱伝導度などの物理的性質は、カ イラリティや結晶性、CNT 束の密度等、構造に依 存するため、デバイス応用への取り組みとして CNT フォレスト構造制御が強く望まれている。こ れまでに我々は、Fe/Al 積層触媒上に Ni を堆積さ せることで基板上の微粒子および CNT が高密度 化することや、CNT 合成前のアニール時間が長く なるほど、微粒子は Ni-Fe 合金を形成しつつ大粒 径化することや、新規に超微粒子が形成されるこ と報告した⁽¹⁻³⁾。

本研究報告では、Ni/Fe 積層触媒から合成した CNT の、合成前アニール時間変化に対する CNT 結晶性および構造を TEM・SEM・ラマン分光法に より分析した。

【実験条件】Si 基板上に EB 蒸着により Fe/Al (2nm/3nm) を積層させ、RF マグネトロンスパッタ 装置を用いて Ni (0.8nm) を積層堆積させた。CNT の合成は熱 CVD 法により、原料ガス C₂H₂45Pa (7 sccm),温度 730 °C の条件で合成した。昇温時の積 層金属状態を分析するために C₂H₂ ガスを供給せ ず真空中アニールした。アニール前後の基板表面 微粒子および合成した CNT を SEM や TEM を用い て観察した。また、CNT についてはラマン分光法 により分析を行った。

【結果と考察】Fig.1 に、CNT 合成前アニール時間 を変化させたときの、CNT および基板表面微粒子 を SEM および TEM により観察し、密度をプロッ トしたものを示す。微粒子密度は 30 分間アニール を行うことで低下するが、60 分間行うと 3.5 分ア ニールのときとほぼ同程度となる。一方で CNT 密 度は、アニール時間 3.5 分・60 分のとき、微粒子 密度と大きく異なる結果を示した。

Fig.2 に、アニール時間変化による、CNT の G/D 比および 2600 cm⁻¹付近に現れる 2D バンドのシフ ト結果を示す。G/D 比は、3.5 分間アニールに比べ て 30 分間アニールの場合に僅かに高い値であっ た。また、60 分間アニールを行った場合では 3.5 分間アニールを行なった時とほぼ同じ値を示した。 また、2D バンドシフトは、アニール時間を変化さ せても同様の値を示した。 以上の結果について考察する。Fig.1 の微粒子密度と CNT 密度が乖離した理由は、CNT 合成条件が最適条件から大きく外れたためだと考えられる。 よって、Ni/Fe/Al 積層基板上の微粒子は、実験条件に示す CNT 合成条件では触媒として活性ではないことが示唆された。また、Fig.2の結果から、アニール時間を変化させても、合成した CNT の結晶性や直径を維持したまま CNT を合成することが可能である結果が示唆された。

【参考文献】

小路紘史 *et al.*,第 60 回春季応物予稿集 (2013) 17-075
Koji *et al.*, Trans. MRS-J (2012) **37 (4)** pp.511-514
Koji *et al.*, DRM (2013) **36** (2013) Pages 1–7

Fig. 2 Plots of (left axis) G/D ratios and (right axis) 2D band shift as a function of annealing time for the CNTs grown on Ni/Fe/Al catalysts.