Silicon Surface oxidation and Passivation by Remote Induction-Coupled Oxygen Plasma

TUAT, °Satoshi Shigeno, Tomohiko Nakamura, Shinya Yoshidomi, Masahiko Hasumi, Toshiyuki Sameshima E-mail:tsamesim@cc.tuat.ac.jp

I. Abstract

We report oxygen radical induced oxidation caused by induction-coupled remote plasma of 13.56 MHz radio frequency with mixed gases of O_2 and Ar for passivation of silicon surfaces at a low temperature. Oxidation treatment for 3 min followed by 1.3×10^6 Pa pressure H₂O vapor heat treatment at 260 °C for 3 h increased the minority carrier effective lifetime from 3.3×10^{-5} (bare surface) to 3.3×10^{-4} s. The recombination velocity decreased from 2000 (bare surface) to 100 cm/s. These results indicate a capability of thin oxide formation and effective passivation of silicon surfaces at a low temperature.

II. Experimental

A remote type induction-coupled plasma equipment was constructed, as shown in Fig. 1 [1]. Mixed gases with O₂ and Ar at 2 and 8 sccm, respectively, were introduced to the plasma tube. The gas pressure was 2.0×10^{-2} Pa. Plasma was generated by applying an 13.56 MHz radio frequency RF electric power of 100 W. A mesh plate closed plasma and oxygen radical flew down to the sample. Two substrates of 20 Ω cm n-type silicon with a thickness of 500 um coated with 100 nm thick thermally grown SiO₂ layers were prepared. The SiO₂ layers at the top surface were removed by 5 % diluted hydrofluoric acid. The first sample was placed directly under the mesh plate. The second sample was placed 5 cm apart from the first one, as shown in Fig. 1. Oxygen radical treatment was conducted for 3 min. The samples were subsequently treated with 1.3×10^6 Pa H₂O vapor at 260 °C for 3 h [2]. The minority carrier effective lifetime τ_{eff} was measured using a 9.35 GHz microwave transmittance measurement system under 635 nm continuous light illumination.

III. Results and discussion

Figure 2 shows τ_{eff} for samples in the cases of top SiO₂ removing, oxygen radical treatment, and 1.3x10⁶ Pa H₂O vapor heat treatment. τ_{eff} was low of 3.3×10^{-5} s for the top SiO₂ removed sample because the bare silicon surface had a high density of carrier recombination defect sites. τ_{eff} was still low of 6.8x10⁻⁶ and 1.3x10⁻⁵ s for the first and second samples. These results indicate that the oxidized top surface by oxygen radical at room temperature had substantial defect sites. 1.3x10⁶ Pa H₂O vapor heat treatment at 260 °C for 3 h markedly increased τ_{eff} to 3.3×10^{-4} s for the second sample placed 5 cm apart from the position directly under the mesh plate, as shown in Fig. 2. On the other hand, τ_{eff} was still low of 3.7x10⁻⁵ s for the first sample placed directly under the mesh plate. The surface recombination velocity at the top surface S_{top} estimated from the experimental τ_{eff} was 2000 cm/s for the initial sample with the top bare surface. Oxygen radical treatment with mixed gases

Fig.1: Schematic apparatus for oxygen radical treatment.

Fig.2: τ_{eff} for samples in the cases of top SiO₂ removing, oxygen radical treatment, and 1.3×10^6 Pa H₂O vapor heat treatment.

with O_2 and Ar resulted in high S_{top} of 7500 and 11000 cm/s for second and first samples. 1.3×10^6 Pa H₂O vapor heat treatment at 260 °C for 3 h decreased S_{top} to 100 and 900 cm/s for the second and first samples, respectively. We interpret that H₂O vapor heat treatment made Si-O bondings relaxed and the surface stable with thin SiO₂ for the second sample. On the other hand, there was still a high density of recombination defects probably caused by deep ultra violet light irradiation from the plasma for the first sample placed directly under the mesh plate.

References

[1] H. Abe, S.Yoshidomi, Y. Nagatomi, M. Hasumi and T. Sameshima: Mater. Res. Soc. Symp. Proc. (San Francisco, CA, 2012) 1271296.

[2] T. Sameshima and M.Satoh: Jpn. J. Appl. Phys. 36 (1997) L687.