MBE 法により作製した Co_xFe_{4-x}N エピタキシャル膜の磁気異方性

Magnetic anisotropy in Co_xFe_{4-x}N epitaxial thin films grown by MBE 筑波大院 電子・物理工学¹ O佐内辰徳¹, 伊藤啓太¹, 安富陽子¹,都甲薫¹, 末益崇¹

> Inst. of Appl. Phys., Univ. of Tsukuba ^OT. Sanai¹, K. Ito¹,Y. Yasutomi¹, K. Toko¹, and T. Suemasu¹ E-mail: bk200811060@s.bk.tsukuba.ac.jp

【はじめに】スピン分極率が高い新たなスピントロニクス材料として強磁性窒化物に注目している。特に、理論計算により Co₃FeN のスピン分極率が-1.0 となり¹⁾、ハーフメタリックなスピン注入源としての応用が期待できる。これまでに、分子線エピタキシー(MBE)法により、SrTiO₃(STO)(001)基板上への Fe₄N、Co₄N、Co_xFe_{4.x}N (0.4<x<2.9)薄膜のエピタキシャル成長を実現した²⁻⁴⁾。Fe₄N と Co₄N について、VSM による磁化測定を行ったところ、磁化容易軸が Fe₄N では*H*//[100]方向であったのに対し、Co₄N では *H*//[110]方向となった。本実験では Fe₄N と Co₄N の間の組成である Co_xFe_{4.x}N について磁化測定を行い、組成による磁化容易軸の変化を明らかにする。

【実験】MBE 法により固体(Fe, Co)と RF-N₂を同時供給し、STO(001)基板上に膜厚 6 nm の CoFe₃N 薄膜をエピタキシャル成長した。Co_xFe_{4-x}N の組成比の制御は流量レートで行った。なお、酸化防 止膜として約 3nm の Au キャップを施した。作製した組成の異なる試料に対して、VSM 測定によ って外部磁場を-1 T~1 T の範囲で[100].[110]の 2 方向に印加し、室温で磁化曲線を測定した。

【結果】Figs. 1 に Fe₄N,CoFe₃N,Co₄N の VSM 測定の磁化曲線を示す。Fe₄N, Co₄N では以前の結果 と同様にそれぞれ Mr/Ms の値が H//[100]>H//[110]、H//[110]>H//[100]となったが、Co を加えた CoFe₃N ではMr/Msの値が H//[100], [1-10]方向の間でほとんど差が無かった。これにより、Co_xFe_{4-x}N は組成変化に伴い、磁化容易軸が[100]→[110]となり磁気異方性が変化することが明らかになった。 また、CoFe₃N の保磁力が Fe₄N, Co₄N に比べ、極端に小さくなった。飽和磁化の値については SQUID 測定で評価する。

1)Y. Takahashi et al., J. Magn. Magn. Mater. 323 (2011) 2941.

2)K. Ito et al., J. Cryst. Growth **322** (2011) 63. 3)K. Ito et al., J. Cryst. Growth **336** (2011) 40.

4)T. Sanai et al., J. Cryst. Growth 357 (2012) 53. 5)K. Ito et al., Jpn. J. Appl. Phys. 51 (2012) 068001.

