17a-D7-1

Ce³⁺賦活黄色窒化物蛍光体の結晶構造及び発光特性

Crystal Structure and Photoluminescence of a Ce³⁺-doped Yellow Nitride Phosphor

○解栄軍¹, 阮健², 舟橋司朗¹, 武田隆史¹, 末廣隆之¹, 広崎尚登¹

NIMS¹, Wuhan Univ. Sci. Technol.²

E-mail: Xie.Rong-Jun@nims.go.jp

Hecht *et al.* has reported that $SrAlSi_4N_7$ crystallizes in an orthorhombic crystal system with the Pna21 space group, and its structure consists of corner-sharing SiN4 tetrahedra incorporating infinite chains of edge-sharing AlN4 tetrahedra running along the c-axis. ^[1] Eu^{2+} -doped $SrAlSi_4N_7$ shows a broad emission band centered at 620-650 nm and an external quantum efficiency of 58.5% under the blue light excitation, indicating a promising orange-red phosphor for white light-emitting diodes (LEDs).^[1,2] In this work, the synthesis and crystal structure of Ce³⁺-doped SrAlSi_4N_7 phosphors were investigated, and the

photoluminescence properties were evaluated and discussed.

 Ce^{3+} -doped SrAlSi₄N₇ phosphors were synthesized by gas pressure sintering. The band structure calculated by the DMol³ code shows that SrAlSi₄N₇ has a direct band gap of 3.87 eV. The single crystal analysis indicates a disordered Si/Al

distribution and an imperfect structure containing Fig.1 Photoluminescence spectra of SrAISi₄N₇:Ce³⁺ nitrogen vacancies. The phosphor can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm (Fig. 1). The external quantum

0.5

0.4

0.3

0.2

0.1

fotal spectrla flux (mW/nm)

efficiency was 38.3% under the 450nm excitation. A white light LED lamp with color temperature of 6350 K and color rendering index of Ra = 78 was achieved by combining $Sr_{0.97}AlSi_4N_7:Ce^{3+}_{0.03}$ with a commercial blue InGaN chip (Fig.2). It indicates that $SrAlSi_4N_7:Ce^{3+}$ is a promising yellow emitting down-conversion phosphor for white LEDs.

Fig.2 Emission spectrum of white LEDs using SrAlSi₄N₇:Ce³⁺

[1] C. Hecht, et al., *Chem. Mater.* 21 [8] 1595-601 (2009).
[2] J. Ruan, et al., *J. Am. Ceram. Soc.*, 94 [2] 536-542 (2011).

Phospho