Electrochemical reduction of KHCO₃ and NaHCO₃ using Cu electrode for the energy conversion and storage

Univ. Tokyo, [°]Heng Zhong, Katsushi Fujii, Yoshiaki Nakano E-mail: zhongheng@hotaka.t.u-tokyo.ac.jp

Electrochemical reduction of CO₂ into useful organics, especially to the combustible chemical fuels, is a good way to convert and store the solar energy because large amounts of the solar energy are converted into electricity through photovoltaic (PV) panels. Currently, most of the researches related to the electrochemical reduction of CO₂ use the gaseous CO_2 bubbling as the carbon source. However, during this process, most of the CO_2 is exhausted directly into the air without any reaction, which not only causes a waste of the carbon source but also makes the separation of the gas products and the unreacted CO2 inevitable. Therefore, in research, the carbonate (CO_3^{2-}) and this bicarbonate (HCO3) solution were used as the carbon source and their effect were studied and compared with the CO₂ bubbling.

In this research, A copper wire (φ 0.5mm, 99.999%, Nilaco) was used as the working electrode. An Ag/AgCl electrode saturated with NaCl was selected as the reference electrode along with a Pt wire as the counter electrode. The CO₂ (99.995%, Taiyo Nippon Sanso) was bubbling for 10 min before and during the experiments when the CO₂ was used as the carbon source.

Results from the cyclic-voltammetric measurement showed that the CO₂ bubbling didn't affect the reaction too much when KHCO₃ were used as the electrolyte (Fig. 1). The onset potentials at, for example, -0.2 mA cm⁻² were around -1.07 V *vs.* Ag/AgCl no matter with or without CO₂ bubbling. This is probably due to the

dissolved CO_2 changed to HCO_3^- in this pH region. Hori and co-workers reported that the production of CH₄ and C₂H₄ increased steeply with the cathodic potential from -1.4 to -1.6 V vs. Ag/AgCl, while the H₂ generation dropped quickly in the electrochemical reduction of CO₂ in KHCO₃ electrolyte with CO_2 bubbling [1]. The Voltammogram obtained in the present research was very similar to the Hori's data. However, When the KCl or K_2CO_3 were used as the electrolyte, not only the onset potential shifted positively, but also the current changed obviously with the CO₂ bubbling. According to the pH value of the KCl electrolyte, the dissolved CO₂ became H₂CO₃, while in the K₂CO₃ solution, most dissolved CO₂ changed to CO_3^{2-} . Therefore, the HCO_3^- has an important role in the CO_2 reduction.

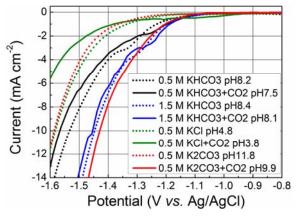


Fig. 1 Voltammograms obtained at different electrolytes with or without CO_2 bubbling (M: mol L^{-1}).

Reference

[1] Y. Hori, et al., J. Chem. Soc., Faraday Trans. 1, 1989, 85, 2309.