17p-B5-8

プラズマ後窒化による HfO₂/Al₂O₃/SiGe ゲートスタックの EOT スケーリングに関する検討

Investigation of EOT scaling of HfO₂/Al₂O₃/SiGe gate stack by plasma post-nitridation 東大院工¹, 住友化学²

⁰韓在勲¹, 張睿¹, 長田剛規², 秦雅彦², 竹中充¹, 高木信一¹

Univ. of Tokyo¹, Sumitomo Chemical Co. Ltd.²

^OJ.-H.Han¹, R.Zhang¹, T. Osada², M. Hata², M. Takenaka¹, and S. Takagi¹

E-mail: hanjh@mosfet.t.u-tokyo.ac.jp

【はじめに】近年、 歪シリコンゲルマニウム (SiGe)は、その高い正孔移動度から高性能 MOSFET のチャネル材料としての応用が期待さ れている. また歪 SiGe MOS 構造を用いた高性能 光変調器応用も提案されている[1].しかし, high-k/SiGe MOS 界面の場合、10¹² eV⁻¹cm⁻²以上の 高い界面準位密度(Dit)が報告されており、高性能 なデバイス実現の妨げとなっている. 我々は ECR (Electron Cyclotron Resonance) プラズマ後窒 化を用いた Al₂O₃/SiGe の MOS 界面改善技術の研 究を進めてきた[2]. この技術によって, EOT (Effective Oxide Thickness)の増加を抑制しながら, 良好なAl₂O₃/SiGe MOS 界面特性が得られている. しかし, 更なる EOT スケーリングのためには Al₂O₃の誘電率は不十分であり、HfO₂のような高 誘電率材料を導入する必要がある. そこで, プラ ズマ後窒化法による HfO₂/Al₂O₃/SiGe ゲートス タックの EOT スケーリングを検討した.また, 界面のAl₂O₃膜厚およびプラズマ後窒化条件を変 えつつ, EOT 増分と界面準位量の関係について 報告する.

【実験結果】図 1 にプラズマ後窒化を用いた SiGe0.25 MOS キャパシタの作製プロセスを示す. 各キャパシタは, Al₂O₃/SiGe, HfO₂/SiGe, HfO₂/Al₂O₃/SiGe の構造を持ち、一部のサンプル にはプラズマ後窒化を次の通り施した.まず, Al₂O₃またはHfO₂を1 nm 堆積した後, ECR 法に よって生成された窒素プラズマを照射した(プラ ズマ後窒化). 次に Al₂O₃ または HfO₂ を再び堆積 した後、キャパシタを製作した. 図2にその電圧-容量特性(C-V 特性)を示す. HfO2/SiGe MOS キャ パシタの C-V 特性(図 2(a))から, HfO₂/SiGe 界 面には多くの界面準位が存在することが分かる. HfO₂/SiGe ゲートスタックにプラズマ後窒化を施 して界面特性の改善を試みたものの, C-V 特性 (図 2(b))の改善は見られなかった.一方, Al₂O₃ を堆積した後、プラズマ後窒化を行ってから HfO₂を堆積したサンプル(図 2(c))では、周波数分 散の改善があることが確認できる. この結果か ら、 プラズマ後窒化による HfO₂/Al₂O₃/SiGe 構造 を用いることで、Al₂O₃/SiGe 並の界面特性を維持 しながら, HfO₂により EOT スケーリングが可能 であることが示唆された.しかし, EOT をスケー リングするためには Al₂O₃の膜厚を1 nm 以下に 薄層化することが求められる. そこで, 界面特性 を維持しながらも Al_2O_3 の膜厚を最小に出来る最 適な条件を明らかにするための実験を行った. 図 3 は Al_2O_3 膜厚と窒素プラズマの RF 強度を変 えながら, プラズマ後窒化による EOT の増分と 界面準位密度 (D_{it})の最小値との関係を求めった 結果である. 図 3 から, EOT の増分と D_{it} には Al_2O_3 膜厚や RF 強度に依らずユニバーサルな関 係があることが分かり, Al_2O_3 の膜厚と RF 強度 を同時に減らすことで, 界面特性を維持しなが らスケーリングが可能であることが分かった.

【謝辞】本研究の一部は総務省戦略的情報通信研究開発推進制度(SCOPE)と半導体理工学研究センター(STARC)の助成により実施した.

【参考文献】

[1] M. Takenaka and S. Takagi, JQE, 48, p. 8, 2012
[2] 韓在勲他, 第 60 回応用物理学会春季学術講 演会, 神奈川工科大学, 28a-G2-6

図3. プラズマ後窒化によるEOTの増分とD_{it}の最 小値の関係