エピタキシャル TiN/AIN/TiN 接合の作製

Fabrication of Epitaxial TiN/AlN/TiN Junctions

埼玉大院 ⁰高崎 博行,成瀬 雅人,田井野 徹,明連 広昭

Graduate School of Science and Engineering, Saitama Univ., [°]H.Takasaki, M.Naruse, T.Taino, and

H.Myoren

E-mail: Takasaki@super.ees.saitama-u.ac.jp

1. <u>まえがき</u>

フォトン検出器は医学や天文学、材料分析な どの様々な分野で用いられ、次世代のフォトン 検出器として超伝導トンネル接合 (Superconducting Tunnel Junction : STJ)が期待 されている。

現在までに STJ に関する様々な研究が行わ れており、多結晶膜の電極材料と比較して、エ ピタキシャル膜の方が 1 桁程度高いエネルギ 一分解能を得られたという報告がある^[1]。また、 NbN/AIN/NbN 接合や Al/MgO/Al 接合において、 格子定数が異なるにも関わらず 3 層全てがエ ピタキシャル成長することも報告されている ^{[1][2]}。そこで、本研究では超伝導電極材料とし て TiN、トンネルバリアに AIN を用いることで、 0.3 K でフォトン検出動作可能なエピタキシャ ル TiN/AIN/TiN 接合の作製を目的とする。

2. 超伝導電極材料 TiN

TiN は、Table 1 に示すように窒素とチタンの 組成により、液体ヘリウム温度(4.2 K)以上 で超伝導転移する膜が成膜可能なこと、また、 単結晶 MgO 基板上でエピタキシャル成長が可 能なこと^[4]、さらに NbN に比べてフォトン検 出器としての理論分解能が高いことなどの特 徴が挙げられる。

1 DI

Table T Physical property					
	基板	超伝導電極			トンネルバリア
材料	MgO	TiN	NbN	Ta	AIN
結晶系	立方晶	立方晶	立方晶	立方晶	六方晶
格子定数[nm]	0.421	0.424	0.439	0.287	a = 0.311 c = 0.498
超伝導転移温度 T _C [K]	-	0.5~5.0	16.5	4.4	-
エネルギーギャップ 2∆[meV]	-	0.15~1.52	5.02	1.33	-
理論分解能 ^[1] @ 5.9 keV [eV]	-	2.6~8.1	14.7	7.6	-

3. TiN の格子定数と超伝導転移温度

電力・ガス圧を一定とし、窒素の流量比を 変化させて成膜した TiN の格子定数と超伝 導転移温度の関係を Fig. 1 に示す。どの条件 においても液体ヘリウム温度以上の超伝導 転移温度を示すことが分かった。

Fig. 1 Lattice constant and critical temperature of fabricated TiN films as function of ratio of N_2 flow to total sputtering gases.

4. <u>TiN/AlN/TiN の結晶性</u>

膜厚の異なる AIN トンネルバリアを持つト ライレイヤーを堆積し、XRD 測定を行った。 膜厚が 1.0 ~ 1.5 nm の間で TiN 上部電極が (100) 配向から (111) 配向に変化することが わかった (Fig.2)。詳細は講演で報告する。

Fig. 2 Diffraction intensity ratio of TiN (200) / MgO (200) and TiN (111) / MgO (200) as function of AlN barrier thickness. 参考文献

[1] P.Verhoeve et al., IEEE Trans. Appl. Supercond., vol.9 No.2 (1999)

[2] Z.Wang et al., Physica C 282-287 (1997) 2465-2466

[3] 浜尾 他, 第72回応用物理学会学術講演会 (2011 秋)

[4] A.Kawakami et al., IEEE Trans. Appl. Supercond., vol.15 No.2 (2005)