HTS-SQUID を用いた異種金属間摩擦攪拌接合の界面評価

Nondestructive-Evaluation Using SQUID for Interface of Friction Stir Welding between Dissimilar Metals

豊橋技科大 ⁰鹿毛 孝浩, 吉田 圭佑, 鈴木 健文, 廿日出 好, 安井利明,

福本昌宏, 田中 三郎

Toyohashi Univ. of Technol. ^OT. Kage, K. Yoshida, T. Suzuki, Y. Hatsukade, T. Yasui,

M. Fukumoto and S. Tanaka E-mail: k103805@edu.imc.tut.ac.jp

1. はじめに

摩擦攪拌接合(Friction Stir Welding: FSW)は、 従来の溶接では困難であった融点の異なるア ルミと鉄などの異種金属の接合が可能であり、 今後の発展が期待されている技術である。本研 究ではこれまで不可能とされてきた数 10 μm の界面組織を、HTS-SQUID グラジオメータを 用いたロボット式非破壊検査システムを用い て測定することで、鉄鋼とアルミ合金の FSW の接合界面の導電性を評価した。

2. 実験方法

実験には厚さ 6 mm の SUS304 と A6063 の突 合せ FSW 継手を使用した。接合品質は、接合 を行う回転ツールの移動速度によって変化す るサンプルへの入熱量に依存するためツール 回転速度と接合速度を変化させたサンプル3 つを作製した。測定では、サンプルの上下端に 電極を取り付けて接合部を通過するように 400 Hz、50 mA の電流を印加した。Fig.1 に示 す測定システムを用いて簡易電磁シールド内 でリフトオフ20mmとしSQUIDグラジオメー タを走査させ、サンプル上部の磁場勾配分布 dB_{a}/dx および dB_{a}/dy を測定した。また、測定し た磁場勾配から電流ベクトルマップを作成し た。使用した SOUID は平面微分形 HTS-SOUID グラジオメータであり、400 Hz でのノイズレ ベルは 10 $\mu\phi_0/\text{Hz}^{1/2}$ であった。

3. 実験結果

ツール回転速度 1000 rpm、接合速度 300 mm/min で接合したサンプルを測定した結果を Fig.2 に示す。磁場勾配 $dB_z/dy \ge dB_z/dx$ を電流 密度 $J_x \ge J_y$ に変換したベクターマップをサン

プルの写真に重ねて示した。マップの左右両端 は下向きの電流が見られるが、これは端効果に よるものである。ベクターマップ中央を見ると、 電流が接合中央左部分を主に上に流れている ことがわかり、中央での界面の導電性が高いこ とが示唆された。このような界面の導電性分布 と、接合の力学的特性を比較することで、界面 の非破壊評価へと繋げられると考えられる。

4. まとめ

以上から、SQUID での FSW における接合界 面の導電性評価の有用性を示した。

Fig.2 FSW sample vector map and distributions of magnetic field gradients.

謝辞

SQUID を提供していただいた ISTEC/SRL の 田辺圭一氏に深く感謝いたします。