高画素タイプの POF イメージガイドによるホログラム伝送と再生像の評価

Transmission of hologram using a POF image guide having higher core number and the investigation of

reconstructed images.

島根大総合理工 〇野村 佳祐, 横田 正幸 Shimane Univ. [°]Keisuke Nomura, Masayuki Yokota E-mail: S129619@matsu.shimane-u.ac.jp

1. はじめに

我々は比較的柔軟なエンドプローブを開発するこ とを目的として, POF (plastic optical fiber) イメージ ガイドによるホログラム伝送を行い、その基礎特性 を調べてきた. そして、シミュレーションの結果か ら POF のファイバ直径 (開口径) が再生像の分解能 に大きな影響を与えることが分かった1.

今回は新しく高画素数 (13,000 画素) の POF を用 いたホログラム伝送における再生像の評価を行った.像から求めたmの値においては有意な差は見られな 従来の低画素数(7.400 画素)の POF との比較から 形状計測などの応用に対する適用性について検討し た.

2.実験と結果

Fig. 1 に実験光学系を示す. 光源は波長λ = 632.8 nmのHe-Neレーザーとした.ネガパターンのUSAF テストターゲットのGroup 0 Element 1 (G0E1) から Group 3 Element 3 (G3E3) (空間周波数 f = 1.00 ~ 10.1 lp/mm) までの部分の透過光を物体光とした. また, 記録距離は150 mm とした. 今回使用した高画素数 のPOF (POF 2.0H) と従来の低画素数のPOF (POF 2.0L, POF1.5L)の仕様をそれぞれ Table 1 に示す.

再生像の分解能を定量的に比較するために、再生 像の強度画像から各f_kに対するコントラストmを求 めた¹. その結果を Fig. 2 に示す. また, POF の開口 径に対する再生像の分解能の変化を調べるために、 POF 2.0H で伝送したホログラム(直径 2.0 mm)を POF1.5Lのホログラム(直径1.5 mm)と同じ大きさ にトリミングした. トリミングしたホログラムを POF 2.0H(1.5)として、このホログラムから得られる 再生像の強度画像から m を求めた. そして, POF 2.0H(1.5), POF 1.5L とシミュレーションで得られた ホログラムの再生像の強度画像から各fsに対するm の値の変化をFig. 3に示す. ここで、今回用いたシ ミュレーションの条件は記録距離150 mm で開口径 1.5 mm, コア直径 20 µm の POF を用いたホログラ

Fig. 1 Experimental setup: SF, spatial filter; BS, beam splitter; M, mirror; PC, personal computer; L, lens.

ム伝送の実験を想定した.この条件下でのシミュレ ーションを IF1.5 として表している.

Fig. 2からPOF 2.0H とPOF 1.5L の fsに対する m の値を比較すると, $f_s \ge 6 \text{ lp/mm}$ において有意な差 がみられる.このことから、POFのコア直径が同程 度であれば、再生像の分解能はPOFの開口径に大き く依存することが分かった.

また Fig. 3 から, POF 1.5H と POF 2.0H(1.5)の再生 い.このことから、予想される様にPOFのコア直径 が同程度で、開口径が同じであれば再生像の分解能 はほとんど変化しないことが確認できた.

これらのことから、POFのコア直径が同程度の大 きさであれば、再生像の分解能はPOFの開口径に大 きく依存すると考えられる.

Table 1 Specification of POF used in the test.

	POF 2.0H	POF 2.0L	POF 1.5L
Diameter of fiber (mm)	2.0	2.0	1.5
Diameter of core (µm)	14	20	15
Number of core fiber	13,000	7,400	7,400
Length of fiber (mm)	498	499	470

3.まとめ

今回,新しく高画素数のPOFを用いたホログラム 伝送において再生像の分解能を調べた. 従来の低画 素数のPOFを用いた実験結果と比較から,POFのコ ア直径が同程度であれば、伝送されたホログラムの 再生像の分解能はPOFの開口径に依存することが 分かった. 今後は今回使用した高画素数のPOFを用 いて,形状計測への適用が可能か検討する.

4.参考文献

1. 横田正幸, 河尻直幸, 光学, 42 (2013) 144-152.