REBCO コート線材の縦磁界下における臨界電流に人エピンが与える影響 The influence of artificial pinning centers on critical current of RE-coated conductor in a

longitudinal magnetic field

九工大¹,住友電工²,日本原子力機構³ ○ 大橋 愛一郎¹,田邊 賢次郎¹,

ビャトキン ウラジミール¹, 木内 勝¹,小田部 荘司¹, 松下 照男¹, 大松 一也², 岡安 悟³

Kyushu Inst. of Tech.¹, Sumitomo Electric Industries², Japan Atomic Energy Agency³ ^OAiichiro Ohashi¹, Kenjiro Tanabe¹, Vladimir Vyatkin¹, Masaru Kiuchi¹, Edmund Soji Otabe¹, Teruo Matsushita¹,

Kazuya Ohmatsu², Satoru Okayasu³

E-mail: ohashi@aquarius10.cse.kyutech.ac.jp

1. はじめに

近年、高い臨界電流密度*J*_cを持つ REBCO コート線 材が開発されている。このような高い特性を有する理 由の一つに優れた結晶配向性があり、これにより線材 全体の均一電流が期待できる。一方で、電流通電方向 と同じ方向に磁界を加える縦磁界下では、ローレンツ 力が働かない、フォースフリーの状態となり、*J*_cが増 加する[1]。しかし、金属超伝導体のような大きな*J*_cの 増加の報告はまだ少ない。この主な原因は、まだ十分 な結晶の配向性が得られていないために電流と磁界が 平行になっていないためである。また、縦磁界下でど のようなピンを導入すると縦磁界効果に有効であるか 等の研究もほとんど行われていない。

本研究では人工ピン入りコート線材と重イオン照射 により人工ピンを導入したコート線材の縦磁界下での *J*cを測定し、これらのピンが縦磁界下での*J*c特性にどの ような影響を与えるかを調べた。

2. 実験方法

測定で用いたコート線材は、SuperPower 社製の人工 ピン入り GdBCO コート線及び、住友電工製の GdBCO コート線材にそれぞれ Xe イオンと Au イオンを照射エ ネルギー200 MeV で照射したものである。それぞれの 試料の諸元を Table.1 に示す。臨界電流密度 J_c は直流四 端子法を用いて行い、 $E_c = 1.0 \times 10^{-4}$ V/mの電界基準 で決定した。全ての測定は全て液体窒素中 77.3 K で行 っている。磁界の印加方向は *ab* 面内において電流 *I* に通電方向に対して平行及び垂直とした。

rublett Specifications of the specificity			
specimen	thickness d[μm]	$T_{\rm c}[{\rm K}]$	J _c (0T) [A/m ²]
GdBCO _{APC}	1.0	88.4	2.22×10^{10}
GdBCO _{Xe irr}	2.1	91.5	7.33×10^{9}
GdBCO _{Au irr}	2.1	90.4	2.67×10^{9}

Table.1 Specifications of the specimens

3. 結果及び検討

Fig. 1 は縦磁界下における試料の $J_c - B$ 特性を自己 磁界で規格化したものを示す。市販の人工ピンを導入 したコート線材は、測定磁界領域では横磁界に比べて J_c は増加しているが、磁界に対して単調に減少してい る。一方で、Xe 照射を行った試料は縦磁界の場合にお いて自己磁界から 0.1 T にかけて J_c が増加しているこ とがわかる。この J_c の増加は僅かであるが、Au イオン を照射した線材でも確認できる。重イオン照射による 欠陥は縦磁界下で有効であることがわかる。

Fig. 2は 0.1 T における自己磁界からのJ の増加率を

示す。また、比較のために、人工ピンを導入していない試料の結果も一緒に示す。この結果から、自己磁界の*J_c*が高いほど縦磁界効果による*J_c*の増加が大きいことがわかる。但し、その傾きは有効に働くピンの違いにより異なることがわかる。詳細な議論は当日行う。

Fig. 1 $J_c - B$ properties of the specimens by critical current ratio

Fig. 2 Relationship between J_c value in self-field and normalized J_c

参考文献

[1] Yu. F. Bychkov et al.: JETP Lett., 9 (1969) p. 404