17p-D6-11

可視光励起光電子分光法による伝導電子の直接観察 Direct Observation of Conduction Electrons by Visible Light Photoemission Spectroscopy 名大院工, ⁰市橋 史朗, 志村 大樹, 西谷 健治, 桒原 真人, 伊藤 孝寛, 原田 俊太, 田川 美穂, 宇治原 徹 Nagoya Univ., [°]F. Ichihashi, D. Shimura, K. Nishitani, M. Kuwahara, T. Ito, S. Harada, Miho Tagawa, and T. Ujihara

E-mail: ichihashi@sic.numse.nagoya-u.ac.jp

[背景] 近年、超高効率を目指し、中間バンド型太陽電池[1]やホットキャリア型太陽電池[2]など の第三世代型太陽電池の研究開発が盛んになっている。これらの太陽電池では、そのバンド構造 や伝導キャリアの挙動を綿密に設計する必要がある。そのためには、実際に作製した試料中の伝 導電子がどのようなエネルギーを持って取り出されるかを測定し、新たな試料構造に反映させる というプロセスが重要となる。しかし、伝導電子のエネルギーを精密に測定できる手法が確立さ れていない。本研究では負の電子親和性(Negative Electron Affinity: NEA)表面を利用することで、 伝導帯を伝導する電子を真空中に取り出し、その運動エネルギーを測定する、可視光励起光電子 分光 (Visible light photoemission spectroscopy: VPS) 法を提案する。

[手法の概要] Fig. 1に NEA 表面を形成した時の半導体とアナライザー間のポテンシャルダイアグ ラムを示す。NEA 表面では真空準位が伝導帯底よりも低くなっているため、伝導帯に励起された 電子は表面に拡散し、表面の薄いポテンシャル障壁をトンネルして真空中に放出する。その電子 をバイアスにより加速しアナライザーへ導く。アナライザーの仕事関数とバイアスが既知である ため、放出された電子の運動エネルギーから、伝導帯中を伝導する電子のエネルギーを決定でき、 さらに、角度分解光電子分光法を用いることで伝導帯のエネルギー分散も決定できる。

[手法の実証]本手法の検証として GaAs について測定を行った。試料には、p-GaAs(001)基板(Zn ドープ濃度 5×10¹⁸ cm⁻³)を用い、酸化を防ぐため試料表面に非晶質 As 膜を堆積させた。真空チャ ンバーにおいて、350℃で表面の非晶質 As 膜を除去した後、Cs と O₂の交互供給により NEA 表面 を作製した。試料に-80 V のバイアスを印加し測定を行った。Fig. 2 は GaAs の禁制帯幅 (1.41 eV) より大きなエネルギーを持つ光 (1.71 eV) で励起した場合の電子分布マッピング像である。縦軸 はフェルミ準位からのエネルギー、横軸は光電子の放出角度で、明るい部分は光電子の強度が高 いことを示している。下に凸の放物線上の分散が観察され、この形状は理論的な伝導帯のΓ点付近 の分散形状とよく一致する。伝導帯底のエネルギーで理論値と実験値との差を評価したところ、 その差は 50 meV 以下であった。また、励起光エネルギーを大きくすると、より高エネルギーの 電子の割合が増える様子も観察されており、これは、ホットキャリアを測定している可能性を示 唆する。さらに、本手法では放出する光電子の量が 1~100 nA であり、従来の光電子分光法に比べ 非常に多く、そのため、アナライザーのスリットを狭めても十分な光電子が得られ、短時間かつ 超高分解能の測定も期待できる。

本研究は、科研費・挑戦的萌芽研究(25600088)により行われた。 [1] A. Luque and A. Marti, *Phys. Rev. Lett.* **78**, 5014 (1997). [2] R. T. Ross and A. J. Nozik, *J. Appl. Phys.* **53**, 3813 (1982).

Fig. 1 Potential diagram between sample and analyzer Difference of the Fermi level between the sample and the analyzer is the same as the bias applied to the sample.

Fig. 2 Electron distribution mapping image in GaAs The excitation photon energy is 1.71 eV. The vertical axis indicates the energy from Fermi level and horizontal axis indicates the emission angle of the photoelectron.