## 17p-D6-8

## 2 接合タンデム太陽電池効率の内部発光量子収率依存性

Conversion Efficiency of Double-Junction Tandem Solar Cells Depending on Internal Luminescence Quantum Yields

<sup>o</sup>朱琳<sup>1</sup>,金昌秀<sup>1</sup>,吉田正裕<sup>1</sup>,陳少強<sup>1</sup>,佐藤慎太郎<sup>1</sup>,望月敏光<sup>1</sup>,秋山英文<sup>1</sup>,金光義彦<sup>2</sup> ISSP, Univ. of Tokyo<sup>1</sup>, ICR, Kyoto Univ.<sup>2</sup>

E-mail: zhulin@issp.u-tokyo.ac.jp

Shockley and Queisser, in their seminal paper<sup>[1]</sup>, not only formulated the conversion efficiency  $\eta_{sc}$  of single junction solar cells in the detailed-balance limit (S-Q limit), but also calculated the effects of finite external luminescence quantum yield ( $y_{ext}$ ) less than 100%. Calculated results of the solar cell efficiency  $\eta_{sc}$  for various values of  $y_{ext}$  are often compared with reported record efficiencies of various solar cells <sup>[2]</sup>. Recently, Miller and coworkers <sup>[3]</sup> pointed out that the approach to the S-Q limit needs a high value of the external yield  $y_{ext}$ , which then needs an extremely high internal luminescence quantum yield ( $y_{int}$ ) and bottom-surface reflectivity *R*. They also analyzed the sensitivities of  $\eta_{sc}$  on  $y_{int}$  and *R*.

In this work, we theoretically analyzed the efficiency  $\eta_{sc}$  of double-junction tandem solar cells for the optimized band gap energies ( $E_{g1}$  and  $E_{g2}$ ) including their dependence on the internal yields ( $y_{int1}$  and  $y_{int2}$ ) of the top and bottom sub-cells. As the internal yields decrease from 1, the calculated  $\eta_{sc}$  first decreases drastically for high internal yields, and relatively slowly for low internal yields, as shown in Fig. 1 (a-c). The optimal bandgap energies  $E_{g1}$  and  $E_{g2}$ , shown in Fig. 1 (d, e), increase in a very similar way. When  $y_{int1}$  and  $y_{int2}$  are both less than 0.9, their effects on  $\eta_{sc}$  are symmetric. When at least one of  $y_{int1}$  and  $y_{int2}$  is greater than 0.9, however, their effects on  $\eta_{sc}$  are asymmetric: The  $\eta_{sc}$  is more sensitive to  $y_{int2}$  of bottom cell than  $y_{int1}$  of top cell. When the  $y_{int1}$  and  $y_{int2}$  are both less than 0.3, there exists a linear logarithmic relation between  $\eta_{sc}$  and the geometric mean  $y_{int}^*=(y_{int1} y_{int2})^{0.5}$ , as shown in Fig. 1 (b).

References: [1] W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). [2] M. A. Green, Prog. Photovolt. Res. Appl. 20, 472 (2012). [3] O. D. Miller et al., IEEE J. Photovoltaics 2, 303 (2012).



Figure 1 (a, d, e) The  $\eta_{sc}$  (%), the optimal  $E_{g1}$ ,  $E_{g2}$  as a function of the two internal yields ( $y_{int1}$  and  $y_{int2}$ ). (b, c) The change tendency of  $\eta_{sc}$  with  $y_{int}$ \* in the follow conditions: c1 is  $y_{int1}=y_{int2}$ ; c2 is  $y_{int1}=0.5$  and  $y_{int2}=0.5$ ; c3 is  $y_{int1}=0.9$  and  $y_{int2}=0.9$ ; c4 is  $y_{int1}=1$ ; c5 is  $y_{int2}=1$ , respectively. Reflectivity of 0 and 1 was assumed for the top and bottom surfaces. Optical thickness al=5 was assumed for both of the top and bottom sub cells.