17p-D7-1

## 異種金属酸化物の揮発現象を活用した不定比α-Al<sub>2</sub>O<sub>3</sub>結晶の作製

## Preparation of nonstoichiometric α-Al<sub>2</sub>O<sub>3</sub> crystal by using vaporization phenomenon of

## different kind metallic oxide

神戸大理 0源治 伯洋宗, 内野 隆司

Kobe Univ., <sup>°</sup>Kumihiro Genji, Takashi Uchino

E-mail: 131s207s@stu.kobe-u.ac.jp

【序論】代表的耐火材や研磨材であるα-Al<sub>2</sub>O<sub>3</sub>は構 造中に殆ど格子欠陥を含有しないので欠陥に由来す る光吸収や発光は殆ど観測されない。しかし、近年炭 素をドーピングしたα-Al<sub>2</sub>O<sub>3</sub> (α-Al<sub>2</sub>O<sub>3</sub>:C)において酸素 空孔に由来する発光が報告されて以来, α-Al<sub>2</sub>O<sub>3</sub>:Cを 大容量光記憶デバイスや線量計として応用すべく研 究が行われている[1]。α-Al<sub>2</sub>O<sub>3</sub>は真空還元雰囲気下で 加熱すると Al<sub>2</sub>O などの亜酸化物として揮発すること が知られている[2]。従って、α-Al<sub>2</sub>O<sub>3</sub>を真空還元雰囲 気下で加熱することにより、不定比組成を有する α-Al<sub>2</sub>O<sub>3</sub>が作製可能である[3]。一方, α-Al<sub>2</sub>O<sub>3</sub>と同様 に高融点酸化物である MgO は, MgO とα-Al<sub>2</sub>O<sub>3</sub>の1: 1 化合物である MgAl<sub>2</sub>O<sub>4</sub>結晶中では, アルミナ成分よ りもより亜酸化物として揮発しやすい[4]。従って、 α-Al<sub>2</sub>O<sub>3</sub>の真空還元加熱過程で、Mg を共存させるこ とにより,さらなる不定比性を作製試料中に導入する 事が可能になると期待できる。そこで本研究では、 MgAl<sub>2</sub>O<sub>4</sub> / Al<sub>2</sub>O<sub>3</sub> 比の異なる種々の試料を真空還元溶 融した。さらに得られた試料の不定比性を酸素空孔の 発光測定により評価した結果について報告する。

【実験】 $\alpha$ -Al<sub>2</sub>O<sub>3</sub>: MgAl<sub>2</sub>O<sub>4</sub> = 100 : x (x = 0 ~ 10) と なるように $\alpha$ -Al<sub>2</sub>O<sub>3</sub> 試薬と MgAl<sub>2</sub>O<sub>4</sub> 試薬を混合した。 これら混合粉体試料を誘導加熱装置を用いて真空下 約 1900 °C程度で 3 分間加熱し, 球状試料を得た。球 状試料を粉砕した後, 試料の X 線回折パターン及び 発光スペクトルを測定した。また試料中の Mg 濃度を 誘導結合プラズマ発光分析法 (ICP) により定量した。

【結果】Fig. 1 に、真空還元溶融試料の XRD パタ ーンを示す。MgAl<sub>2</sub>O<sub>4</sub>の添加量 x が x  $\leq$  6 の場合, 溶融後の試料中に MgAl<sub>2</sub>O<sub>4</sub> の回折ピークは観測され なかった。従って、x  $\leq$  6 では真空還元溶融時に添 加した MgAl<sub>2</sub>O<sub>4</sub> はほぼ揮発したと考えられる。Fig. 2, 3 に試料の発光スペクトルの測定結果を示す。Fig. 2 より,酸素空孔の単量体 (F, F<sup>+</sup>中心)の発光強度は、 MgAl<sub>2</sub>O<sub>4</sub> の添加の影響を殆どうけていないことが分 かる。一方, Fig. 3 に示すように、酸素空孔の二量体 ( $F_2^+$ ,  $F_2^{-2+}$ 中心)の発光強度は、MgAl<sub>2</sub>O<sub>4</sub> の添加ととも に増大するが、試料中に MgAl<sub>2</sub>O<sub>4</sub> 相が残留した x  $\geq$ 7 の試料からは、発光が観測されなかった。これらの 結果より、MgAl<sub>2</sub>O<sub>4</sub> の揮発時に、試料中に  $F_2^+$ ,  $F_2^{-2+}$ 中心の正電荷を補償する負電荷を有する欠陥が生成 することが示唆された。

[1] M. S. Akselrod et al., J. Fluoresc. 13, 503 (2003).



Fig. 1. XRD patterns of the samples (x=0, 3, 5, 6, 7, 10).



Fig. 2. Photoluminescence spectra of oxygen monovacancies in the samples (x = 0, 5, 10). Excitation wavelengths of the *F* and *F*<sup>+</sup> centers are 217 nm , 262 nm , respectively.



Fig. 3. Photoluminescence spectra of oxygen divacancies in the samples (x = 0, 5, 10). Excitation wavelengths of the  $F_2^+$  and  $F_2^{-2+}$  centers are 362 nm, 438 nm, respectively.

<sup>[2]</sup> J. H. Cox et al., Can. J. Chem. 41, 671 (1963).

<sup>[3]</sup> M. Itou et al., J. Phys. Chem. C 113, 20949 (2009).

<sup>[4]</sup> M. A. Sainz et al., Mater. Chem. Phys. 86, 399 (2004).