17p-P7-6

硬 X 線光電子分光法を用いた Mg-InN のエネルギーバンド分布評価

Energy Band Diagrams of Mg doped InN Analyzed by

Hard X-ray Photoelectron Spectroscopy

物材機構¹, SPring-8 物材機構², 工学院大³, 立命館大⁴, ソウル大⁵

[•]井村将隆¹,津田俊輔¹,長田貴弘¹,武田寛之¹,小出康夫¹,A.L.Yang²,山下良之²,吉川英樹², 小林啓介²,山口智広^{3,4},金子昌充⁴,上松尚⁴,荒木努⁴,名西やすし^{4,5}

NIMS¹, SPring-8 NIMS², Kogakuin Univ.³, Ritsumeikan Univ.⁴, Seoul National Univ.⁵

[°]M. Imura¹, S. Tsuda¹, T. Nagata¹, H. Takeda¹, Y. Koide¹, A.L. Yang², Y. Yamashita², H. Yoshikawa²,

K. Kobayashi², T. Yamaguchi^{3,4}, M. Kaneko⁴, N. Uematsu⁴, T. Araki⁴, and Y. Nanishi^{4,5}

E-mail: imura.masataka@nims.go.jp

背景 InN の特異な物性の一つに、表面電荷蓄積縮退層の形成が挙げられ、Mg をドープした InN においても、この表面縮退層は形成される。我々はこれまで硬 X 線光電子分光法(HX-PES、hv = ~5.95k eV)を用いて u-InN 及び Mg-InN の表面-バルク電子状態を評価してきた[1]。その結果、 HX-PES を用いることで初めて、Mg-InN のバルク p 電子状態が評価できることを明らかにした。 そこで本研究では、Mg 濃度([Mg])に対する Mg-InN のエネルギーバンド分布の詳細な変化を評価 し、その特異なエネルギーバンド変化のメカニズムの考察を行ったので報告する。

実験および結果 RF-MBE 法により c 面 GaN/Sapphire テンプレート上に、[Mg]の異なる InN を成長させた。 [Mg]は 1×10^{19} から 5×10^{19} cm⁻³ であった。[Mg]に対す る N 1s スペクトルの形状変化により Mg-InN のポテン シャル分布を評価し、VB スペクトルにより VBM を決 定した後、エネルギーバンド分布を得た。その結果を図 1 にまとめる。Mg ドープすることで Mg-InN のエネル ギーバンド分布は、深さ方向で n⁺-p 構造(表面は n⁺縮退 層が形成されたまま、バルクは Mg アクセプタの影響に より低結合エネルギー側にシフトし p 層を形成した構 造)を反映した形状に変化し、更に [Mg]を増加させるこ とで不連続な 2 準位 n⁺-p 構造を反映した形状へと変化

していることの確認ができる。また O 1s スペクトルの深さ方向依存性を評価した結果、最表面から 4.5 から 7.5 nm 付近において O 1s スペクトルのエリア強度が急激に増加していることの確認ができ、酸素起因のドナーが増加していると予測ができる。よってこの酸素起因のドナーの増加により不連続な n⁺-p エネルギーバンド構造が形成されてしまうと考えられる。

謝辞 本研究の一部は、科研費 (No. 23760319)の支援を受けて実施された。

Ref [1] M. Imura et al., J. Appl. Phys. Submitting