18a-C2-8

プラズマによる H と N ラジカルの表面損失確率の変化

Surface loss probabilities of H and N atoms in H₂ and N₂ mixture gases

- 名大院工 ¹○鈴木俊哉,竹田圭吾,近藤博基,石川健治,関根誠,堀勝

Nagoya University °Toshiya Suzuki, K. Takeda, H. Kondo, K. Ishikawa, M. Sekine, M. Hori

E-mail: suzuki.toshiya@b.mbox.nagoya-u.ac.jp

<u>はじめに</u>

微細加工を1nm以下精度で実現するには、エッチング特性の直接決定因子である内部パラメー タ(基板温度やプラズマ中ラジカル密度、電子密度等)の高精度制御が必要である^[1]。例えば、 プラズマ点火直後から基板温度は急激に変化し、気相の活性種密度はエッチング生成物やチャン バー壁表面の影響を受けており、ラジカルの壁での損失確率がチャンバー壁の表面状態の影響が 指摘されてきた^[2]。しかしながら、ラジカル損失確率のリアルタイム変化は調べられておらず、 この変化の理解が要求されていた。本研究では、チャンバー壁表面の状態が変化した場合に、H₂/N₂ プラズマ中のラジカル密度を *in-situ* で計測して、ラジカル表面損失確率が履歴によってどのよう に変化するのか調べてきた。

実験

 H_2/N_2 プラズマの消灯直後のHとNのラジカル密度の減衰過程を真空紫外吸収分光法(Vacuum Ultraviolet Absorption Spectroscopy: VUVAS)を用いて計測し、壁表面でのラジカル損失確率を見積 もった。プラズマ条件は、 H_2/N_2 ガス流量比75/25、総流量100 sccm、全圧を2.0 Paとして、アンテ ナに VHF 電力350 Wをパルス印加して生成した。計測した H_2/N_2 プラズマ生成の前には、同条件 のシーズニング工程(2分間)、または O_2 プラズマ処理(2分間)、チャンバーの大気曝露(2時間)と 履歴を変化させて計測を行った。なお、VUVASは、HのLyman α 線(121.6 nm)および、Nの $2s^2p^3$ - $2s^22p^2$ (3P)3s (120.0 nm)を計測した。チャンバー内壁はステンレス鋼である.

結果

履歴の異なるチャンバー壁での H と N のラジカル損失確率(α) は図 1 のように得られた。シ ーズニング、(a) チャンバーの大気曝露、(b) H₂プラズマ処理、(c) N₂プラズマ処理の履歴によっ て α が異なることがわかる。H₂プラズマでは α の変化が見られなかったものの、大気曝露ならび に N₂プラズマの履歴をもつ場合には、ラジカル損失確率が H ラジカル((a) 0.052, (c) 0.063)、N ラジカル((a) 0.004, (c) 0.043%) とともに増加が見られた。

考察

N₂プラズマ処理後や大気暴露後のチャンバー 壁の表面損失確率が、H₂/N₂プラズマや H₂プラ ズマ処理後に比べ大きくなった結果として、以下 の要因の相互作用が考えられる。

- (1) N⁺やN₂⁺などの質量の高いイオンによる壁へ のイオン衝撃
- (2) N 原子 (120.2 nm)や H 原子(121.7 nm)から 放出される真空紫外領域の光
- (3) 壁へのガスの吸着

(1)、(2)はタングリングボンドなどの欠陥の形成 し、(3)は表面の変質が、損失確率増加への要因 として考察される。

Fig.1 Surface loss probabilities for nitrogen and hydrogen atom radicals in the H₂/N₂ plasma after (a) air exposure, (b) H₂ plasma, and (c) N₂ plasma.

参考文献: [1] 堀 勝;応用物理 74 1328 (2005). [2] 関根 誠, 堀 勝; Plasma Fusion Res., 85, 193-198 (2009).