18a-C7-4

Successive Phase Transitions and Multiferroic character in Electronic Ferroelectric, RFe_2O_4 (R = Lu, Yb).

Okayama Univ.¹, Ecole Centrale Paris², LLB CE Saclay CNRS-UMR12³, Helmholtz-Zentrum Berlin fuer Materialien und Energie⁴, Hokkaido Univ.⁵

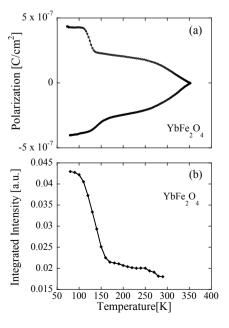
^oTomoko Nagata¹, Yukimasa Fukada¹, Benoit Roman², Ralf Feyerherm⁴, Esther Dudzik⁴,

Pierre-Eymeric Janolin², Jean-Michel Kiat^{2,3}, Nao Hasegawa⁵, Masaki Takesada⁵, Akira

Onodera⁵, Mamoru Fukunaga¹, Jun Kano¹, Takashi Kambe¹ and Naoshi Ikeda¹

E-mail: gsc421124@s.okayama-u.ac.jp

Charge and spin frustrated system, RFe_2O_4 is one of the candidates of multiferroic materials because it is considered as an "electronic ferroelectric" having electric polarization arising from polar charge order of divalent and trivalent iron ions [1]. However recently, some questions arose about the existence of the ferroelectricity and the polar charge ordering in this material [2].


Responding to these discussions, we made precise pyroelectric current measurement in YbFe₂O₄ single crystal and succeeded in proving the presence of electric polarization. Moreover, we found that the temperature variation of $(1/3 \ 1/3 \ integer)$ diffraction signal (Fig.b) was consistent with that of the polarization (Fig.a). These results strongly support the existence of "electronic ferroelectricity" in *R*Fe₂O₄. The polar charge ordering is also supported from the space group consideration in the subgroup of R-3m.

This electronic polarization arising from electronic ordering brings many interesting properties, such as magnetoelectric effect and non-linear conductivity. The magnetoelectric effect was cleared out by the analysis with impedance spectroscopy in LuFe₂O₄. The temperature variations of resistivity, capacitance, relaxation frequency and magnetization all trace out clear hysteresis loop [3]. These results suggest the multiferroic nature in RFe_2O_4 . Non-linear conductivity was also revealed through in-situ measurement

of sample resistivity and temperature in $YbFe_2O_4$. Below the charge ordering temperature of 350 K the conductivity increased nonlinearly with current [4]. Furthermore this material shows successive transitions around room temperature. We will report detailed investigations for these anomalies.

[1] N. Ikeda *et al.*; Nature **436** 1136 (2005). [2] J. de Groot *et al.*;
PRL **108** 037206 (2012). [3] T. Kambe *et al.*; PRL **110** 117602
(2013). [4] T. Nagata *et al.*; Ferroelectrics **442** 45 (2013).

Figure: Temperature variations of the polarization (a) and integrated intensity of $(1/3 \ 1/3 \ integer)$ diffraction signal (b).

