INTRODUCTION
To improve the Power Conversion Efficiency (PCE) of the DSC a new approach was investigated. In our laboratory we fabricated a tandem DSC with Platinum (Pt)-coated mesh used as the counter electrode with a liquid electrolyte. The PCE of 5.52% and J_{SC} of 13.1mA/cm2 were achieved. However, due to the volatilization problem of the liquid electrolyte a quasi-solid electrolyte was adopted. For the quasi-solid materials, poly (9,9-dioctylfluorene) (F8) and poly(3-hexylthiophene) (P3HT) were added to two different electrolyte solutions with o-dichlorobenzene (DCB) been used as the solvent. The electrolyte solution of o-DCB+F8 produced an overall PCE of 0.94% while that of o-DCB+P3HT was 0.2%.

RESULTS & DISCUSSION
An electrolyte solution of 0.1mol/L (lithium iodide (LiI)), 0.05mol/L (iodine (I$_2$)), 0.5mol/L (4-tert-butyl pyridine (4-TBP)), and 0.5mol/L (tetra butyl ammonium iodide) in 1ml o-DCB solvent were prepared in a bottle. Later about 20mg of F8 and 20mg P3HT were added into the prepared electrolyte solution, respectively. Mixtures were stirred and heated until they were properly dissolved. In Figs. 1 and 2 the solid red line represents the tandem cell Pt-mesh counter electrode (CE), the front and back are represented with the blue and green broken line respectively. However, in the Fig.1 o-DCB+F8 produced a PCE of 0.94% while in Fig.2 o-DCB+P3HT a PCE of 0.2%. These efficiencies when compared with the single DSC they are much lower. In our previous experiment, the PCE the single DSC with o-DCB+F8 were 1.53% and tetrahydrofuran (THF)+F8 produced the highest PCE of 2.51%.

ACKNOWLEDGEMENT
This research is partially obtained by a financial assistance of MEXT-supported program for the strategic research foundation at private Universities (S1001033, 2010-2014) and the AIT Special Grant for Education and Research.