19a-B4-7

Photo-Patternable and Adhesive Polymer for Wafer-Scale Microfluidic Device Fabrication ウェーハスケール・マイクロ流路デバイス製作のための感光性接着剤 JSR 株式会社研究開発部 ⁰稗田克彦¹

JSR Corporation¹, R&D department, [°]Katsuhiko Hieda¹, Tom Miyazaki², Sara Peters²,

Paru Deshpande³, Liesbet Lagae³, John O'Callghan³, Josine Loo³, Chengxun Liu³, Bivragh Majeed³,

and Jans Karolien³, JSR Micro NV², IMEC³

E-mail: katsuhiko_hieda@jsr.co.jp

Abstract

A novel photo-patternable and adhesive material for wafer-scale microfluidic devices by simple process steps using photolithographic technique and thermal bonding has been developed. We here report feasibility of such wafer-scale process for bio-MEMS lab-on-chip application.

Wafer-Scale microfluidic fabrication

Our fabrication process is described in Fig.1. Photolithographic process takes place by spin-coating, exposure, and development (2.38wt% TMAH) to realize desired microfluidic structures. SEM image shows smooth and clean polymer surface in Fig. 2. Finally, microfluidic structure was successfully fabricated on 8-inch wafer to demonstrate feasibility of production.

Summary

We have introduced a photo-patternable & adhesive polymer and demonstrated fabrication of microfluidic structure and attachment of glass cover in simple lithography and thermal bonding process. The method is applicable to wafer-scale process and suitable for wafer-level production. We believe the material is a promising solution to polymer microfluidics in bio-MEMS lab-on-chip technology.

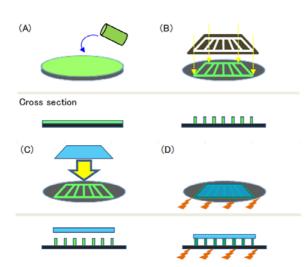


Fig.1 wafer-scale fabrication steps.

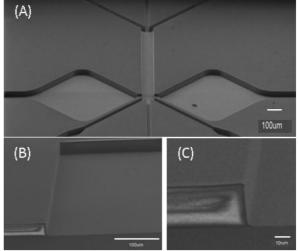


Fig.2 Microfluidic structure using photolithography.