19a-C1-1

## カーリングプローブのパルスプラズマへの応用

**Application of Curling Probe to Pulsed Plasma** 

中部大工<sup>1</sup>, DOWA サーモテック<sup>2</sup>, <sup>O</sup>パンディ アニル<sup>1</sup>, 榊原 渉<sup>2</sup>, 松岡宏之<sup>2</sup>, 中村圭二<sup>1</sup>, 菅井秀郎<sup>1</sup>

Chubu Univ.<sup>1</sup>, DOWA Thermotech<sup>2</sup>, <sup>°</sup>Anil Pandey<sup>1</sup>, Wataru Sakakibara<sup>2</sup>, Hiroyuki Matsuoka<sup>2</sup>, Keiji Nakamura<sup>1</sup>, Hideo Sugai<sup>1</sup>

E-mail: anilpandey.only@gmail.com

## 1. はじめに

反応性プラズマにラングミュアプローブを 挿入すると、ほとんどの場合に絶縁性薄膜が付 着し測定不能になる。このような場合でも電子 密度を測定できる新技術として、Fig.1の左上 に示すカーリングプローブ(CP)を開発した[1]。 さらに最近、これに光ファイバーを組み込んで 発光分光も同時に行えるオプト・カーリングプ ローブ(OCP)を発表した[2]。いずれも定常 プラズマを対象としてきたが、今回はFig.1の 右上に示すように放電を ON、OFF して得られ るパルスプラズマでも、放電 ON 中の平均電子 密度を CP で測定できることを報告する。



Fig.1 Experimental apparatus.

## 2. 実験結果

初めに、連続放電で生成された定常プラズマ における CP の周波数スペクトルの例を Fig.2 に示す。ネットワークアナライザー(NWA) で周波数を 800 MHz から 900 MHz まで掃引す ると、反射が強く減少する周波数(共振周波数)



が、放電 ON 時の f<sub>0</sub>=835 MHz から f=872 MHz に増加する。これらの共振周波数を GHz 単位 で次式に代入すれば、電子密度 n<sub>e</sub> (cm<sup>-3</sup>)が求ま る。

$$n_e = \gamma \frac{10^{10}}{0.806} (f^2 - f_0^2) \tag{1}$$

ここでγはプローブに固有の比例定数である。 次に、パルス放電プラズマの測定例を Fig. 3 に示す。



Fig. 3 Example of data for pulsed plasma.

NWAの測定パラメータ(掃引時間、データポ イント数等)を、放電のON時間・OFF時間に 応じて最適に調整することによって、上図のよ うな多数の不連続的スペクトルから構成され る特異なパターンが得られる。このパターンを よく見ると、左側のスペクトル群はfo近傍で谷 を形成し、右側のスペクト群はf近傍に谷をも つ事がわかる。詳細は講演にゆずるが、NWA の測定原理から考察すると、周波数掃引と放電 のON、OFFが同時進行するため、画面上には 放電 OFF時のスペクトルと、放電 ON時のス ペクトルが交互に現れる。そのような NWA の 最適設定条件等を明らかにする。

- I. Liang, K. Nakamura, and H. Sugai, Appl. Phys. Express 4, 066101 (2011).
- [2] A. Pandey, K. Nakamura, and H. Sugai, Appl. Phys. Express 6, 056202 (2013).