19a-C8-3

電子捕獲履歴現象を利用した多値ランダムテレグラフノイズの 解析(II):個々の酸化膜トラップの評価

Analysis of Multi-Trap Random Telegraph Noise Using Trap Charging History (II): Characterization of Each Individual Oxide Trap

島根大総合理エ¹,半導体理工学研究センター²の土屋敏章¹,田村直義²,榊谷明仁²,

園田賢一郎²,亀井政幸²,山川真弥²,桑原純夫²

Shimane Univ.¹, STARC², ^oT. Tsuchiya¹, N. Tamura², A. Sakakidani²,

K. Sonoda², M. Kamei², S. Yamakawa², S. Kuwabara²

E-mail: tsuchiya@ecs.shimane-u.ac.jp

Random Telegraph Noise (RTN)の原因となっ ているゲート酸化膜トラップの個々の物性を 把握することは, RTN およびそのデバイスへ の影響を理解し,かつ,トラップを低減させる ために重要であると考えられる.

酸化膜トラップにおけるキャリア捕獲履歴 現象を利用した新たな RTN 評価法[1]では,図 1 に示すゲート電圧 $V_{\rm G}$ シーケンスを用いる. $V_{\rm a}$ で $t_{\rm a}$ の間蓄積状態にした後, $V_{\rm i}$ で $t_{\rm i}$ の間オン (RTN)動作させ,この期間終端でのトラップ の電子捕獲状態の履歴を,期間 $V_{\rm m}$ での電流ヒ ストグラム (DCH)によって評価する.

本報告(I)と同一試料を用いて、V_G=1.0 V に おける通常の RTN 特性から得た DCH を図 2 に示す. 図 3(a)には, V_i=1.6 V として t_iの変化 に伴う, 期間 Vm (=1.0 V) での初期電流値の DCHの変化を示す. 図中の状態名 b~f は本報 告(I)の結果によるものである.同一ゲート電圧 1.0 V での DCH にも拘らず,図2と3では大差 がある.図2では状態dとfが支配的であるが, 図3ではtiの増大と共に,期間Viでのトラッ プβとγへの電子捕獲率が増大し,状態fは消失 して c と b の頻度が増大している. 図 3 で, 全 頻度数 N_{Total} に対する各状態 c と b の頻度比 N_c/N_{Total} と N_b/N_{Total} は, 各々トラップβと γ への 電子捕獲率を意味する. そのti依存性(図4) から, 両トラップ共に V=1.6 V での電子捕獲時 間τ_c=10 µs が得られる.別途,反転層電子濃度 を求めれば、τ からトラップの捕獲断面積が導 出でき,トラップの素性判定,および,素子製 造プロセスの改善指針に有用と考えられる.

同様に、充分な t_i での DCH の V_i 依存性(状態b, c, dのみが出現)から得た、トラップ β と γ の各 τ_c/τ_c に相当する頻度比 N_d/N_c と N_d/N_b の V_i 依存性を図 5 に示す. 図から各トラップのSi-SiO₂ 界面からの位置 X_T とトラップ準位

 $E_{T0}-E_F$ (E_F はフェルミ準位)が導出できる.また,前出の V_i =1.6 V での τ_e と図 5 から,トラップβと γ の V_i =1.6 V における電子放出時間 τ_e として,各々37 µs および 17 µs が得られる. 参考文献

[1] 土屋他:応物秋, 2012, 13a-F4-2 および 13a-F4-3.

Fig. 4 The dependences of relative frequencies $(N_b/N_{Total} \text{ and } N_c/N_{Total})$ upon t_i , representing electron capture process for traps γ and β , respectively.

Fig. 5 The dependences of the ratio of the frequencies $(N_d/N_c \text{ and } N_d/N_b)$ upon V_i , ξ corresponding to the zdependence of τ_c/τ_c upon ξ V_G for traps β and γ , zrespectively. Trap $\beta: X_T=0.24 \text{ nm}$,

 $E_{T0}-E_F=0.07 \text{ eV.}$ Trap γ : $X_T=0.69 \text{ nm}$, $E_{T0}-E_F=0.28 \text{ eV.}$

