19a-D1-1

KTaO3及び MgAl2O4 基板上に作製した(100)配向 PbTiO3エピタキシャル薄膜のドメ イン構造

Domain structure in (100)-oriented epitaxial PbTiO₃ thin films grown on KTaO₃ and MgAl₂O₄ substrates.

東工大院¹,名大²,JST さきがけ³[°]江原祥隆¹,中島崇明¹,山田智明^{2,3},舟窪浩¹ Tokyo Tech.¹ Nagoya Univ.²,JST-PRESTO ^{3°}Y. Ehara¹, T. Nakashima¹, T. Yamada^{2.3} and H. Funakubo¹ E-mail: ehara.y.aa@m.titech.ac.jp

【はじめに】強誘電体のドメイン構造は強誘電体の物性に大きく影響することが知られている。代表的な材料であるBaTiO₃やPbTiO₃において詳細なドメイン構造解析は数多くされており、 我々は(100)KTaO₃単結晶基板上に作製したPbTiO₃薄膜で、約50nm以下の膜厚では、完全に(100)配向(*a*ドメイン)配向した膜が得られることを報告した。¹⁾またこの膜は、面内に二つのドメイン構造を有しており、(100)配向が得られるのは、PbTiO₃のユニットセルの[101]/[011]方向の面間隔 [$(a^2+c^2)^{0.5}=0.5696$ nm]がKTaO₃の[110]方向の面間隔[$(a^2+c^2)^{0.5}=0.5641$ nm]とよく一致している(格子不整合1.0%)ためであることを明らかにした。前回の報告では、KTaO₃単結晶基板上のPbTiO₃の膜厚変化に伴うドメイン構造の変化を調査した。²)膜厚が減少してPbTiO₃膜のc/a比が減少するに従い、面内のドメインのチルト角は、直線的に減少し、幾何学的な式{[2tan-1(c/a)-90^o]/2=*a*}で説明できた。今回は異なる基板種に成長させ(100)配向PbTiO₃のドメイン構造を調査したので報告する。

【実験】(100)KTaO₃基板(a = 0.3989 nm)および(100)MgAl₂O₄基板(a = 0.808 nm)上に, 膜厚約30 nmの(100) 配向したエピタキシャルPbTiO₃膜をMOCVD法により作製した。結晶構造はX線回折測定 (XRD)を用い て評価した。

【結果】Fig.1に各基板上に作製した膜のXRD2 θ – θ 測定結果を示した。両基板上ともにPbTiO₃膜が完全にa軸配向していることが確認できた。一方、Fig.2に示した逆格子空間マッピングの結果によるとKTaO₃基板上ではPbTiO₃膜の[100]/[010]方向では基板に拘束されていないが、(100)MgAl₂O₄基板上では[100]方向のドメインが基板に拘束されていることが確認できた。当日はより詳細なドメイン構造の評価を発表する予定である。

【参考】(1) 碇山他, 秋季第67回応用物理学会学術講演会予稿集 31p-V-2, p523 (2006) (2) 江原他, 第60 回応用 物理学会春季学術講演会予稿集 28p-D3-1, p020 (2013)

Fig.1 2XRD θ -2 θ scans of (100)-oriented PbTiO₃ films grown on (100)KTaO₃ and (100)MgAl₂O₄ substrates. (1/d)(nm⁻¹)//100MgAl₂O₄

Fig.2 High-resolution x-ray diffraction reciprocal space mappings (HRXRD-RSM) of PbTiO₃ films.: (a) PbTiO₃ *402/240* on KTaO₃ substrates, (b) PbTiO₃ *402/240* on MgAl₂O₄ substrate.