Transformation Optics Based Lift for Large View-Angle, Phase-Undisturbed Optical Imaging

Chia-Wei Chu^{1,2}, Jui Chang Tsai¹, Zhi Chen^{3,4}, Yu-Bo Duan^{3,4}, Tiancheng Han⁵, Cheng Wei Qiu⁶, George Barbastathis^{3,7}, Baile Zhang^{8,9}, and Yuan Luo^{1,2,*}

¹Center of Optoelectronic Biomedicine, National Taiwan University college of Medicine, Taipei, Taiwan

² Molecular Imaging Center, National Taiwan University, Taipei, Taiwan

³ Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore

⁴National University of Singapore, Singapore

⁵ School of Physical Science and Technology, Southwest University, Chongqing 400715, China
⁶ Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119620, Singapore
⁷ Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
⁸ Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore
⁹ Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore

E-mail: yuanluo@ntu.edu.tw

1. Introduction

Controlling the propagation of light is always an interesting research topic for a variety of applications such as light trapping, display and imaging. Recently, using the invariance of Maxwell's equation, transformation optics has provided a new method to design devices for manipulating light propagation [1] [2]. Here, based on transformation optics, we experimentally demonstrate a two-dimensional optical lift with large viewing angle for the light in visible wavelength. The device is made of a single piece of calcite crystal with $n_c=1.66$, and $n_o=1.48$, which is a natural homogeneous birefringent material with low-loss in visible regime.

2. Simulation

First, the simulation of light propagation, using the software COMSOL Multiphysics, is executed. Fig. 1(a) shows the result of light propagation with calcite ($n_e=1.66$, and $n_o=1.48$), while Fig. 1(b) shows light reflected by the same mirror located above the original position with an increased height of h. The thickness of the calcite *H* is 19.8 mm. Compare the two output beams, obviously, the phases in these two situation are identical.

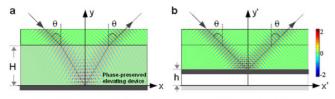


Fig. 1 The simulation of phase-undisturbed optical imaging lift effect

3. Experiment

The dimension of this optical imaging lift is 10 mm (W) x 40 mm (L) x 19.8 mm (H). Fig. 2(a) shows the images when light only reflected from mirror, while Fig. 2(b) shows the images when light reflected from mirror

covered by the designed calcite.

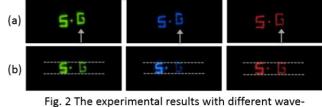


Fig. 2 The experimental results with different wavelength.

4. Conclusion

The phase-undisturbed optical imaging lift with large view-angle is developed and verified both in simulation and experiment.

Acknowledgements

We acknowledge financial support from National Science Council (100-2218-E-002-026-MY3), National Taiwan University (101R7832), National Taiwan University Hospital (NTUH) and the BioSystems and BioMechanics (BioSyM) Independent Research Group of the Singapore-MIT Alliance for Research and Technology (SMART) Centre (015824-039)..

References

- Leonhardt, U., "Optical conformal mapping," Science 312, 1777–1780 (2006).
- [2] Pendry, J. B., Schurig, D. & Smith, D. R., "Controlling electromagnetic fields," Science 312, 1780–1782 (2006).
- [3] Zhang, B., Luo, Y., Liu X. &Barbastathis, G., "Macroscopic invisibility cloak for visible light," Phys. Rev. Lett. 106, 033901 (2011).
- [4] A.Yariv and P. Yeh, *Optical Waves in Crystals*, Wiley, New York (2003)
- [5] Yuan Luo, Baile Zhang, Tiancheng Han, Zhi Chen, Yubo Duan, Chia-Wei Chu, George Barbastathis, and Cheng Wei Qiu, "Phased-preserved optical elevator," Opt. Express 21, 6650-6657 (2013)