Transformation Optics Based Lift for Large View-Angle, Phase-Undisturbed Optical Imaging

Chia-Wei Chu1,2, Jui Chang Tsai1, Zhi Chen3,4, Yu-Bo Duan3,4, Tiancheng Han5, Cheng Wei Qiu6, George Barbastathis3,7, Baile Zhang8,9, and Yuan Luo1,2,*

1Center of Optoelectronic Biomedicine, National Taiwan University college of Medicine, Taipei, Taiwan
2Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
3Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
4National University of Singapore, Singapore
5School of Physical Science and Technology, Southwest University, Chongqing 400715, China
6Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119620, Singapore
7Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
8Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore
9Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore

E-mail: yuanluo@ntu.edu.tw

1. Introduction

Controlling the propagation of light is always an interesting research topic for a variety of applications such as light trapping, display and imaging. Recently, using the invariance of Maxwell’s equation, transformation optics has provided a new method to design devices for manipulating light propagation [1] [2]. Here, based on transformation optics, we experimentally demonstrate a two-dimensional optical lift with large viewing angle for the light in visible wavelength. The device is made of a single piece of calcite crystal with $n_e=1.66$, and $n_o=1.48$, which is a natural homogeneous birefringent material with low-loss in visible regime.

2. Simulation

First, the simulation of light propagation, using the software COMSOL Multiphysics, is executed. Fig. 1(a) shows the result of light propagation with calcite ($n_e=1.66$, and $n_o=1.48$), while Fig. 1(b) shows light reflected by the same mirror located above the original position with an increased height of h. The thickness of the calcite H is 19.8 mm. Compare the two output beams, obviously, the phases in these two situation are identical.

3. Experiment

The dimension of this optical imaging lift is 10 mm (W) x 40 mm (L) x 19.8 mm (H). Fig. 2(a) shows the images when light only reflected from mirror, while Fig. 2(b) shows the images when light reflected from mirror covered by the designed calcite.

4. Conclusion

The phase-undisturbed optical imaging lift with large view-angle is developed and verified both in simulation and experiment.

Acknowledgements

We acknowledge financial support from National Science Council (100-2218-E-002-026-MY3), National Taiwan University (101R7832), National Taiwan University Hospital (NTUH) and the BioSystems and BioMechanics (BioSyM) Independent Research Group of the Singapore-MIT Alliance for Research and Technology (SMART) Centre (015824-039).

References