Optical metrology of an isolated crystalline zinc oxide microsphere on a gold substrate

Huai-Yi Xie, Yia-Chung Chang

Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529
E-mail: damoxie@gate.sinica.edu.tw

1. Introduction

We try to use an efficient and accuracy method to describe optical scattering from an isolated crystalline zinc oxide (ZnO) microsphere on a gold substrate. The calculated three-dimensional (3D) microscopic ellipsometry imaging pictures with nanoscale resolution are present. We calculate the Ψ and Δ spectra for specular reflections for the specific frequency.

2. General Instructions

For an isolated micro-scale spherical object, we can obtain the local function $u_i(r')$ by solving Lipmann-Schwinger (L-S) equation [1]

$$e^{ik_0r}u_i(r) = \frac{1}{N_i}E_0(r) + \sum_{j=1}^{N_i} \int dr'G(r,r')V_j(r')e^{i(\kappa_r-k_0r)}u_j(r'),$$ \hspace{1cm} (1)

where r is restricted in cell i, $G(r,r')$ denotes the dyadic Green’s function for the uniform multilayer background material [1-2], and $E_0(r)$ denotes the unperturbed electric field. $V_j(r)$ describes the perturbation due to replacing the dielectric constant of the background material (denoted by ε_b) by the one for nanoparticle (denoted by ε_a). Under the spherical basis, we can evaluate the near field distribution on the plane $z=0$ (which corresponds to the microscopic image seen in the scatterometry measurements detected at normal direction) according to

$$E(x,y,0) = E_0(x,y,0) + \frac{1}{A_{cell}} \int k_xdk_x \sum_{n} \int_{r}^{2\pi} J_n(k_x\rho)e^{in\phi}G_n,$$ \hspace{1cm} (3)

where

$$G_n = \int \frac{d\phi}{2\pi} e^{-im\phi},$$ \hspace{1cm} (4)

$$\int dz'g_0(0,z')\int d\phi \int \rho'd\rho' e^{-ik_0\rho'}[V_j(r')u_j(r')].$$

Fig. 1 shows the calculated Ψ and Δ spectra for specular reflections for the specific wavelength 400nm and the incident angle 60°. The maximum value of angular momentum considered is $l_{max} = 100$. A fine integration mesh was used to ensure convergence. The diameter of ZnO is $5\mu m$ and the focus area considered is $100\mu m^2$.

3. Conclusions

We have applied the Green’s function method based on spherical harmonic functions to study three-dimensional (3D) microscopic ellipsometry imaging pictures with nanoscale resolution. This will be very useful for exploring biological samples.

Acknowledgements

This work was supported in part by the Nanoproject of Academia Sinica and National Science Council of the Republic of China under Contract No. NSC 101-2112-M-001-024-MY3.

References