近接二層積層による GaAs 基板上 InAs-QD の発光長波長化の検討(III)

Extended emission wavelength of bilayer InAs-QDs on a GaAs substrate (III) 和歌山大シスエ¹, NEC², 物材機構³, シェフィールド大⁴

^o中谷 擁平¹, 尾崎 信彦¹, 大河内 俊介², 池田 直樹³, 杉本 喜正³, E. Clarke⁴, R. Hogg⁴ Wakayama Univ.¹, NEC Corp.², NIMS³, U. Sheffield⁴

[°]Y. Nakatani¹, N. Ozaki¹, S. Ohkouchi², N. Ikeda³, Y. Sugimoto³, E. Clarke⁴, R. Hogg⁴ E-mail: ozaki@sys.wakayama-u.ac.jp

【はじめに】 我々は近接二層積層(bi-laver)法によ る GaAs 基板上 InAs 量子ドット(QD)の 1.3µm 以 上の発光長波長化と広帯域化を目指している[1]。 Bi-layer 法は2層の InAs-QD を 10nm 程度の GaAs スペーサー層を介して近接させることにより、下 層 OD (seed-OD) からの歪伝搬によって上層 OD (active-QD) のサイズ増大を誘起し、発光を長波 長化させる手法である。これまでの我々の研究で、 seed-QD の低密度化が active-QD のサイズ増大の 促進に繋がることが分かっており[1]、前回は、 QD 成長レート(GR)の最適化によって QD の発光 中心波長が 1.32µm まで長波長化し、かつ発光強 度の低減を抑制できることを報告した[2]。今回 は、この最適化された GR で作製した QD bi-layer に歪緩和層(SRL)を導入して、さらなる発光長波 長を目指すとともに、発光強度への影響を調べた ので報告する。

【実験手法】MBE 法により Fig. 1 に示すような QD bi-layer 構造を作製した。その際、seed および active-QD の GR は 0.05ML/s で成長し、SRL

 $(In_xGa_{1-x}As)$ を active-QD 上に 5nm 厚で積 層した。SRL の In 組 成比(x)を 0~0.3 と変 えたサンプルを作製 し、In 組成比が QD の 発光特性に及ぼす影 響を調べた。光学評価 は室温 PL 測定により 行った。

Fig. 1 Schematic image of QD bi-layer.

【実験結果】SRL(In_xGa_{1-x}As)の組成比を x=0,0.1, 0.2,0.25 に変えた際の PL スペクトルを Fig.2(a) に示す。各サンプルの発光中心波長とピーク強度 は Fig. 2(b)に纏めた。 SRL の In 組成比に対し、 発光中心波長は系統的な変化は見られなかった が、x=0.2 において最大値 1375nm が得られた。 また、発光強度は In 組成比に対して単調に減少 し、x=0.3 では発光が計測されなかった。これら の結果は、我々が以前に行った単層 InAs-QD に 対する SRL 積層とは異なり、bi-layer 法で作製し た active-QD に対する SRL 積層が QD の光学特性 に与える影響が大きいことを示している。特に In 組成が大きくなるほどその強度低下は顕著であ り、この原因の一つとして、SRL 積層時に QD の In が SRL との相互拡散を起こし、QD 構造の崩 壊あるいは界面欠陥導入の発生が考えられる。単 層 QD に比べ、bi-layer QD 作製時には歪の影響が 大きく、SRL でのキャップ時に In の相互拡散が 促進された可能性も考えられる。

以上から、bi-layer QD への SRL 積層による長 波長化には、発光強度低減を抑制しながら最大の 長波長化が得られる最適な In 組成比や厚みを模 索する必要があることが分かった。今回最大波長 が得られた In 組成比 0.2 のサンプルでは、GR 適 正化による発光強度改善により強度低減が抑制 されたため、単層 QD との融合により 1.4µm 程度 までの広帯域化に寄与できるものと期待される。

【謝辞】本研究は科学研究費補助金(25286052)お よびキャノン財団の助成を受けて行われた。 [1] N. Ozaki *et al.*, J.Crystal Growth, *in press*

[2]中谷擁平他、第 60 回応用物理学関係連合講演会 29a-PB7-2

Fig. 2 (a) PL spectra from bi-layer QDs capped with SRLs of various In compositions. (b) Plots of peak wavelengths and intensities of the PL spectra against the In composition.