Crystalline AlOx ultrathin layers grown on permalloy (111)-surfaces for magnetic tunnel junctions

1National Institute for Materials Science, 2Univ. of Tsukuba, 3S. Mitani1,2, J.W. Koo1,2 and H. Sukegawa1
E-mail: mitani.seiji@jsap.or.jp

After the room-temperature tunnel magnetoresistance (TMR) of 10–20% was discovered for amorphous AlOx-based magnetic tunnel junctions (MTJs) in 1994 [1,2], crystalline tunnel barriers brought about remarkable TMR effects such as coherent tunneling with TMR ratios of over 100% [3-5]. Although crystalline barriers should be fascinating for MTJ-based spintronic devices, they have been formed only for limited material systems with the (100)-orientation such as Fe/MgO(100) [3,4], Fe/MgAl2O4(100)[6], CoFeB/MgO(100) [7] and Co2FeAl/MgO(100) [8]. In this study, we attempted to fabricate crystalline AlOx barrier layers on a permalloy (111) surface. It is noted that crystalline γ-Al2O3 is recently shown to be one of the coherent tunneling barriers with relatively high TMR ratios through an experimental study of Fe/γ-Al2O3/Fe(100) MTJs [9].

(111)-oriented permalloy thin films were prepared on sapphire substrates by using rf magnetron sputtering. AlOx barriers were prepared by the combination of plasma oxidation and heat treatment for 1 nm thick Al layers grown on the (111)-oriented permalloy. The structure of the AlOx barrier layers was investigated with reflection high-energy electron diffraction (RHEED).

Fig. 1 shows RHEED patterns for permalloy(111) and AlOx barrier surfaces. It is found that the AlOx layer formed on permalloy(111) is in a crystalline state with an atomically flat surface. Although it is difficult to analyze the crystallographic orientation of AlOx from the two-dimensional streak RHEED patterns, γ-Al2O3(111) plane is probably stacked on permalloy(111).

References: