Analysis of Electrical Field in Surface Enhanced Raman Spectroscopy Using Strained-Si Substrate
School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
Siti Norhidayah binti Che Mohd Yusoff, Daisuke Kosemura, Takahiro Kijima, Atsushi Ogura
E-mail: ce21042@meiji.ac.jp

【Background and Objective】Strained-Si technology is essential for high performance transistors. The strained-Si has been proposed as a next-generation substrate because it can enhance carrier mobility. Surface Enhanced Raman Spectroscopy (SERS) is useful to measure stress at the surface of the Si substrate. SERS effect is defined when light is shed onto metal particles thus generates the surface plasmon resonance which strengthens the optical electric field. In our previous study, the biaxial stress state in strained-Si on SiGe-on-insulator (SGOI) was evaluated using SERS [1]. Furthermore, transverse optical (TO) phonon modes as well as a longitudinal optical (LO) phonon mode were able to be excited in the SERS measurements. In this study, the Raman spectra obtained by the SERS measurements were analyzed in detail for the strained-Si on SGOI.

【Experimental Procedure】Figure 1 shows the schematic of the sample for with-SERS technique. The thickness of the strained-Si layer on SGOI was approximately 17.5 nm. Ag was evaporated on the outermost surface of the sample. For without-SERS, we used strained-Si on SGOI sample without Ag evaporation. We used oil-immersion Raman measurement for SERS technique while for without-SERS technique, we used dry Raman spectroscopy. ND: YAG laser with 532 nm wavelength was used as the excitation light for both with and without SERS. The polarizations of the incident and scattered lights were both [110] in the SERS measurements, which is the configuration to excite the LO phonon mode for dry Raman spectroscopy.

![Fig. 1 Schematic of Sample](image)

【Results and Discussions】Figure 2 shows Raman spectra of the strained-Si on the SGOI substrate obtained by the SERS and without-SERS. The Raman spectra were normalized by the Si substrate peak at 520 cm\(^{-1}\). It is clearly shown that the intensity of the strained-Si peak obtained by SERS is larger than that obtained by without-SERS. The values of the Raman wavenumber shifts \(\Delta\omega_{\text{LO}}\) and \(\Delta\omega_{\text{TO}}\) are \(-5.761\) and \(-4.241\) cm\(^{-1}\), respectively. Using \(\Delta\omega_{\text{TO}}\) and \(\Delta\omega_{\text{LD}}\), the biaxial stresses \(\sigma_y\) and \(\sigma_z\) were calculated to be 1.234 and 1.270 GPa, respectively [2]. We conclude that the depolarization clearly occurred by SERS technique.

【Acknowledgement】This study was partially supported by the Semiconductor Technology Academic Research Center (STARC).