20p-C6-1

Dependence of Photovoltaic Performance of Mesogenic - Phthalocyanine - Based Bulk Heterojunction Solar Cell on Alkyl Substituent Length

阪大院工¹, 産総研ユビキタス² [°]Dao Quang Duy¹, 福井 斉¹, 中野 翔平、熊田 泰士¹, 上門敏也¹, 藤井 彰彦¹, 清水 洋², 尾崎 雅則¹

Osaka Univ.¹, AIST², ^oDao Quang Duy¹, Hitoshi Fukui¹, Shohei Nakano¹, Taishi Kumada¹,

Toshiya Kamikado¹, Akihiko Fujii¹, Yo Shimizu², and Masanori Ozaki¹

E-mail: duy@opal.eei.eng.osaka-u.ac.jp

<u>はじめた</u>: Recently, a mesogenic phthalocyanine derivative 1,4,8,11,15,18,22,25-octaalkylphthalocyanine (CnPcH₂), as shown in Fig.1, has been demonstrated as a promising small molecule for use in bulk heterojunction solar cells.^[1, 2] In particular, solar cells, in which the active layer was composed of C6PcH₂ and a fullerene derivative, 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C₆₁ (PCBM), showed relatively high power conversion efficiency (PCE) exceeding 4.2%.^[3] Although the alkyl side-chain plays one important role for packing CnPcH₂ molecules in hexagonal structure, the details of their effects are clarified. Herein, we report the dependence of photovoltaic performance of the solar cells on alkyl substituent length of CnPcH₂.

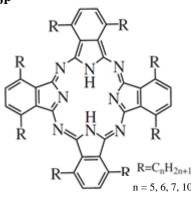


Fig. 1: Molecular structure of CnPcH₂

<u>実験</u>: MoO_x films were thermally evaporated onto ITO substrates. A solution containing a mixture of CnPcH₂:[70]PCBM (3:2) in chloroform with 1,8-diiodooctane, was spin-cast onto a MoO_x layer. Finally, a LiF buffer layer and an aluminum layer were deposited through a shadow mask by thermal evaporation.

結果: Figure 2 shows the J-V characteristics of solar cells in structure of ITO/MoOx/CnPcH2:[70]PCBM/LiF/Al. The device utilizing C10PcH₂ as a donor material showed a PCE of 0.22%, with a short-circuit current density (J_{sc}) of 1.23 mA/cm², an open-circuit voltage (V_{oc}) of 0.65 V, and a fill factor (FF) of 0.28. By reducing the length of alkyl substituents, the photovoltaic performance has been improved. By utilizing C6PcH₂, the J_{sc} increased to 9.63

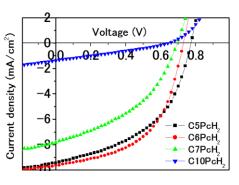


Fig. 2: J-V characteristics of solar cells

mA/cm² and PCE of 3.72% has been achieved. Further, the dependence of the photovoltaic performance on the alkyl-chain length has been discussed, by taking the highest occupied molecular orbital of the CnPcH₂, the absorbance spectra of CnPcH₂ and packing of CnPcH₂ molecules in hexagonal structure into consideration.

謝辞: 本研究は JST 先端的低炭素化技術開発(ALCA)の援助の基に行われた。 [1] Y. Miyake *et al.*, *Appl. Phys. Express*, **4** (2011) 021604. [2] Q.D. Dao *et al.*, *Appl. Phys.Lett.*, **101** (2012) 263301 [3] Q.D. Dao *et al.*, *Submitted to Organic Electronics*