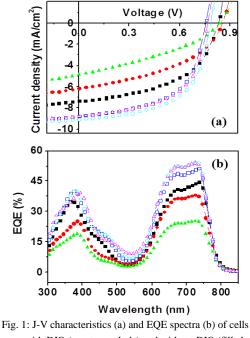
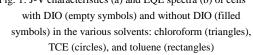
20p-C6-2

Efficiency Enhancement in Mesogenic - Phthalocyanine - Based Bulk Heterojunction Solar Cell By Using Solvent Mixtures

阪大院工¹, 産総研ユビキタス² [°]Dao Quang Duy¹, 大森 雅志¹, 熊田 泰士¹,藤井 彰彦¹, 清水 洋², 尾﨑 雅則¹

Osaka Univ.¹, AIST², ^oDao Quang Duy¹, Masashi Ohmori¹, Taishi Kumada¹, Akihiko Fujii¹,


Yo Shimizu², and Masanori Ozaki¹


E-mail: duy@opal.eei.eng.osaka-u.ac.jp

<u>はじめに</u>: A mesogenic phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH₂) has been demonstrated as a promising small molecule for use in bulk heterojunction (BHJ) solar cells.^[1] C6PcH₂ exhibits not only excellent processability for thin films but also appropriate electronic characteristics for a solar cell, such as a deep highest occupied molecular orbital energy level, a relatively

small band gap, strong optical absorption, and high hole and electron drift mobilities exceeding $1.4 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ and $0.5 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ in the crystalline phase, respectively. Despite their prominent characteristics, solar cells, in which the active layer was composed of C6PcH₂ and a fullerene derivative, 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C₆₁ (PCBM), showed relatively low power conversion efficiency (PCE).^[2] Herein, we report the high performance of C6PcH₂:PCBM BHJ solar cells fabricated with separated phases using solvent mixtures.

<u>実験</u>: MoO_x films were thermally evaporated onto ITO substrates. A solution containing a mixture of C6PcH₂:PCBM (2:1) in various solvents with an additive, such as 1,8-diiodooctane (DIO), was spin-cast onto a MoO_x layer. Finally, a LiF buffer layer and an aluminum layer were deposited through a shadow mask by thermal evaporation. 結果: As shown in Fig. 1a, the C6PcH₂:PCBM devices

without DIO in toluene showed a PCE of 3.1%, with a short-circuit current density (J_{sc}) of 7.4 mA/cm², an open-circuit voltage (V_{oc}) of 0.83 V, and a fill factor (FF) of 0.50. By using DIO to control the nanomorphology, the performance of BHJ solar cells was markedly improved. As depicted in Fig. 1b, by adding 0.2% v/v DIO to toluene, the external quantum efficiency was improved from 48% to 54% at the Q-band and the shoulder of the B-band emerged at 450 nm and the PCE increased to 3.7% with a J_{sc} of 8.7 mA/cm² and a FF of 0.55. Further, by incorporating 0.2% v/v of 1,8-dibromooctane to chloroform, the J_{sc} and the PCE increased to 9.7 mA/cm² and 4.2%, respectively.^[4]

謝辞: 本研究は JST 先端的低炭素化技術開発(ALCA)の援助の基に行われた。

[1] Y. Miyake *et al.*, *Appl. Phys. Express*, 4 (2011) 021604. [2] Q.D. Dao *et al.*, *Jpn. J. Appl. Phys.*, 52 (2013) 012301
[3] Q.D. Dao *et al.*, *Appl. Phys.Lett.*, 101 (2012) 263301 [4] Q.D. Dao *et al.*, *Submitted to Organic Electronics*