反応性スパッタリングガスの微量添加によるアモルファスMg$_2$Si系半導体の作製

Fabrication of amorphous Mg$_2$Si-based semiconductors by small addition of reactive sputtering gas

岐阜大学 未来型太陽光発電システム研究センター ○(NATIONAL INSTITUTE OF ADVANCED INTERACTING MEDIA)
Gifu Univ., CIPS ○(NATIONAL INSTITUTE OF ADVANCED INTERACTING MEDIA)
Shota Hara, Hiroyuki Fujiwara
E-mail: fujiwara@gifu-u.ac.jp

【はじめに】多結晶Mg$_2$Si(poly-Mg$_2$Si)膜は、高い光吸収係数を示す資源的制約の少ない新規低コスト太陽電池材料として期待されるが、これまで異種基板上のpoly-Mg$_2$Si粒の異常成長および空気中での大きな酸化が課題となっていた。そこで我々は、前報、Mg$_2$Siターゲットを用いたrfマグネットロスパッタリング法にN$_2$ガスを添加し、poly-Mg$_2$Si膜をアモルファス化したアモルファスMg$_2$Si(a-Mg$_2$Si:N)を初めて作製した。そして、作製したa-Mg$_2$Si:N膜では、表面が平坦なアモルファス構造により膜内の酸化が大幅に抑制され、poly-Mg$_2$Si膜よりも高い光吸収係数が得られることが明らかにした。本研究では、a-Mg$_2$Si:N膜を使用した太陽電池デバイスの作製を視野に入れ、N$_2$添加量をさらに調整してa-Mg$_2$Si:N膜を作製し、その構造および光学特性を評価した。

【実験】試料は、ターゲットにMg$_2$Siを用いたrfマグネットロスパッタリング法により、基板温度200℃および成膜圧力9.0 Paを用いて、SiO$_2$熱酸化膜(膜厚500Å)で覆われたSi(111)基板上に作製した。Arガスガス(95 SCCM)にN$_2$ガス(0〜0.1 SCCM)およびH$_2$ガス(5 SCCM)を添加して、太陽電池デバイスに適したa-Mg$_2$Si:N膜の成長条件を決定することを試みた。

【結果】図1に、添加するN$_2$ガス流量を0から0.1 SCCMまで変化させて作製したMg$_2$Si試料のラマンスペクトルを示している。[N$_2$]=0 SCCMにより成膜したMg$_2$Si試料のスペクトルでは、Mg$_2$Si結晶のラマンピーク(253 cm$^{-1}$, 344 cm$^{-1}$)およびナノ結晶Si(nc-Si)のラマンピーク(506 cm$^{-1}$)が確認された。これに対し、N$_2$ガス流量を増加させると、これらのラマンピーク強度は大きくなり減少し、[N$_2$]=0.1 SCCMでMg$_2$Si層は完全にアモルファス化することが明らかとなった。図2は、分光エリプソメトリにより評価した、N$_2$ガス流量が0 SCCMおよび0.1 SCCMの時のMg$_2$Si層の光吸収係数を示している。図からわかる様に、Mg$_2$Si層の光吸収係数は非常に高く、特に[N$_2$]=0.1 SCCMの試料においては、105 cm$^{-1}$の高い吸収係数が広いエネルギー領域(E≥1.7 eV)で観察された。この様に、a-Mg$_2$Si:N膜は新規太陽電池材料として非常に有望であり、今後さらに成長条件を改善することにより太陽電池デバイスへの応用が可能になると期待される。

Fig.1. Raman spectra of the Mg$_2$Si thin films fabricated using different N$_2$ flow rates.

Fig.2. Absorption coefficients of the Mg$_2$Si thin films measured by spectroscopic ellipsometry.