機能性高分子修飾グラフェンナノシートによるフレキシブル成形加工
Flexible Molding Using by Functional Polymer-grafted Graphene Nanosheet

東理大工1, 東理大工学部2 ○遠藤 洋史1,2・河合 文彦1,2, 金杉 友成1,2, 河合 武司1,2
Tokyo Univ. of Science 1, Center for Colloid and Interface Science in Tokyo Univ. of Science 2
○Hirosi Endo1,2, Fumihiko Kono1, Tomonari Kanasugi1, Takeshi Kawai1,2
E-mail: endo@ci.kagu.tus.ac.jp

【緒言】グラフェンナノシート(GN)とはグラファイトを単層剥離した二次元ナノシートであり、優れた機械的強度や化学的安定性を有することから次世代の炭素材料として近年非常に注目されている。このGNは体積当たりの表面積が大きく、化学修飾も容易であるため有機官能基の化学的機能性を最大限に引き出すことができ、新規の有機–無機複合材料創製へと展開できる。本研究では、modified-Hummers法により得られた酸化グラフェン(GO)表面に原子移動ラジカル重合(ARTRP)によりチオン性ポリマーとしてpoly[2-(N,N-ジメチルアミノ)エチルメタクリレート](PDMAEMA)を導入したGOを合成し(Fig.1), アニオン性ポリマーのpoly (acrylic acid) (PAA)と混合することで生成するGO含有ポリイオンコンプレックスゲルの温度およびpH応答性を検討した。此のポリイオンコンプレックスゲルを用いてグラフェンが均一に分散したフィルムを作製し、機械的評価を行った。最後に、GO含有ゲルの特異的な性質を利用した応用として、ソフトなゲル状態からのハードなプラストック状態への転換による形態維持可能な成形加工を試みた。

【実験】グラファイトからmodified-Hummers法によりGOを剥離生成後、DMAEMAをモノマーとしたARTRPによりPDMAEMA-GOを合成した。ポリマー鍵導入の確認はFTIR及びXPS測定により行った。次にPDMAEMA-GOの水分散溶液に所定のPAA水溶液を加え、ポリイオンコンプレックスゲルを生成させ、FTIRにより形成機構を検討した。PDMAEMAの温度応答性をUV-vis測定により、それに伴うゲル-ゲル転移を示差熱量測定(DSC)によって確認した。フィルムを作製する際には国体物質を機械的な力を与え反応させるメカノケミカル法を適用し、ゲルに含まれる溶媒量を制御して混合-固形化した。最終的に、この固形状ゲルをプレスすることでフィルム化し、機械的評価を引張強度試験により行った。

【結果・考察】正電荷を有するPDMAEMA-GO水分散溶液と負電荷を有するPAAを混合するとポリイオンコンプレックスゲル形成による凝集が確認できた。ゲル内では機械的強度をもつグラフェンが均一に分散していると考えられるため、有用なコンポジット材料になると期待できる。次にメカノケミカル法とプレス法を併用しグラフェン含有フィルムを作製した。フィルムの断面SEM像から凝集体が確認されないことから、期待通りにグラフェンが均一に分散したフィルム作製に成功したといえる。さらに引張強度試験によりフィルムの物性解析を行った。PDMAEMA-GOと高分子を導入していないGOフィルムとで比較したところ、破断時の応力、伸長率1%時から求められるヤング率の値に大幅な増加がみられた。さらに応力-ひずみ曲線が明確な降伏点を持つことがない熱可塑性エラストマーに近い挙動を示した。PDMAEMA-GOを用いたフィルム内では、ハードメチルルとしてのグラフェンが高分子マトリクス中に均一に分散し、かつ拘束されている状態で存在していると推察できる。作製したゲルフィルムは伸縮性と剛性を兼ね備えることから所望の成形加工ができる。例えばフィルムをピンセットに巻きつけ低温で乾燥させると、鍔型となるピンセットの形状を維持して取り出せることができる(Fig.2)。熱可塑性エラストマー様の伸縮性が成形加工を容易にし、グラフェンの機械的強度が形態維持に大きく影響を及ぼしていることが示唆された。