Enhanced Photocurrent of Au-TiO₂ Photoanode Excited by

Grating-Coupled Surface Plasmon Resonance

^OHathaithip Ninsonti^{1,2}, Weerasak Chomkitichai^{1,2}, Akira Baba^{1,*}, Wiyong Kangwansupamonkon³, Sukon Phanichphant^{4,*}, Kazunari Shinbo¹, Keizo Kato¹ and Futao Kaneko¹

¹ Center for Transdisciplinary Research, Niigata University, Niigata 910-2181, Japan

² Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

³National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani,

12120, Thailand

⁴ Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand *E-mail: ababa@eng.niigata-u.ac.jp

Introduction

We have previously reported that the short-circuit photocurrent in organic solar cells could be increased by using grating-coupled SP excitations in which a Blu-ray disc recordable (BD-R) is used as a grating substrate [1,2]. In this work, dye/Au-loaded TiO₂ films were fabricated on a metal grating surface to couple with surface plasmon resonance for further enhancement of photocurrent of Au-TiO₂ photoanode.


Experimental

The BD-R/Au/Au-loaded TiO₂ substrates were prepared by following our previous work [2]. 5, 10, 15, 20-Tetrakis (1-methyl-4-pyridinio) porphyrin tetra(p-toluenesulfonate) (TMPyP) and sodium copper chlorophyllin (SCC) were deposited as dyes on Au-loaded TiO₂ by layer-by-layer deposition technique. Ferrous sulfate heptahydrate (FeSO₄.7H₂O, 0.1 M), and sodium sulfate (Na₂SO₄, 1 M) were used as electrolytes. ITO glass substrate was used as the cathode.

Results Discussion and Conclusion

In this work, the dye-sensitized cell composed of the Au grating/Au-TiO₂/TMPyP-SCC LbL (20 bilayers)/ electrolyte/ITO substrates were fabricated. The results showed that the grating-coupled surface plasmon

excitation together with Au-loaded TiO_2 could enhance the short-circuit photocurrent of the fabricated cells as shown in Fig. 1.

Fig. 1 Enhanced photocurrent factor as a function of the incident light angle. Here the enhancement factor is the ratio of the measured current in each sample to the current with unloaded TiO_2 and without propagating SP excitation.

References

- [1] A. Baba, K. Wakatsuki, K. Shinbo K. Kato and F. Kaneko, "Increased short-circuit current in grating-coupled surface plasmon resonance field-enhanced dye-sensitized solar cells," J. Mater. Chem., vol.21, pp.16436–16441, 2011.
- [2] A. Baba, N. Aoki, K. Shinbo, K. Kato and F. Kaneko, "Grating-Coupled Surface Plasmon Enhanced Short-Circuit Current in Organic Thin-Film Photovoltaic Cells," ACS Appl. Mater. Interfaces, Vol. 3, pp.2080-2084, 2011.