SrTiO3 基板上に堆積させた SrRu0.9 Cr0.1 O3 薄膜の輸送・磁気特性

Transport and magnetic properties of SrRu_{0.9}Cr_{0.1}O₃ thin films on SrTiO₃ substrates

東大院理¹, JST-CREST², KAST³

⁰栗田 佳織¹, 近松 彰^{1,2}, 重松 圭¹, 福村 知昭^{1,2}, 長谷川 哲也^{1,2,3}

Univ. of Tokyo¹, JST-CREST², KAST³ [°]Kaori Kurita¹, Akira Chikamatsu^{1, 2}, Kei Shigematsu¹,

Tomoteru Fukumura^{1, 2}, Tetsuya Hasegawa^{1, 2, 3}

E-mail: kurita@chem.s.u-tokyo.ac.jp

【はじめに】 ペロブスカイト型ルテニウム酸化物 SrRuO₃ (SRO) はキュリー温度(T_c)が 166 K の強磁性金属であり、酸化物電極材料として利用されている。バルク体 SRO に Cr を 10%置換した SrRu_{0.9}Cr_{0.1}O₃ (SRCO)では、 T_c が 22 K 上昇する [1]。一方、SrTiO₃ (STO) (001) 基板上の薄膜の場合、 T_c は SRO 薄膜で 152 K、SRCO 薄膜で 165 K である [2]。このようにバルク体と薄膜において Cr ドープが T_c に与える影響に差が見られるが、その起源は明らかでない。そこで本研究では、STO 基板上に SRCO 薄膜を様々な酸素分圧下でパルスレーザー堆積(PLD)法によって作製し、それらの結晶構造と輸送特性、および磁気特性について調べた。

【実験方法】SRCO 薄膜は、PLD 法により STO (001)基板上に作製した。基板温度は 600°C、酸素 分圧は $1 \times 10^4 - 1 \times 10^2$ Torr とした。結晶構造は X 線回折により評価した。電気抵抗率測定と磁化測 定は、それぞれ四端子法およびスクイッド磁束計により行った。

【結果と考察】X 線回折により、いずれの条件においても SRCO 薄膜のエピタキシャル成長を確認した。Fig. 1 に還元条件である酸素分圧 1×10^4 Torr で作製した SRO および SRCO 薄膜の X 線回折パターンを示す。Cr 置換によって(002)ピークの位置が低角側にシフトし、面直方向の格子定数は4.012 Å から 4.037 Å へと増加した。これは Cr 置換により酸素欠損が増加したことを意味する。 Fig. 2 に酸素分圧を変えて作製した SRCO 薄膜の抵抗率の温度依存性を示す。酸素分圧の上昇に伴い薄膜の抵抗率は低下している。 1×10^3 Torr 以下の酸素分圧では 2-300 K の温度範囲で半導体的な挙動が見られた。一方、 1×10^2 Torr では金属的な挙動が見られ、130 K 付近で強磁性転移に伴うキンクが見られた。 1×10^2 Torr で作製した SRCO 薄膜において、磁化の温度依存性から求めた $T_{\rm C}$ は 165 K であり、過去の報告[2]と同等であった。これらの結果から、SRCO 薄膜では酸素欠損の

減少により強磁性金属相が 現れると結論できる。講演で は STO (111) 基板上に作製 した薄膜の結果も述べ、基板 の面方位が輸送・磁気特性に 与える影響について議論す る。

L. Pi *et al.*, J. Phys.
Condens. Matter 14, 7391 (2002).

[2] E. V. Ramana *et al.*, IEEETrans. Magn. 46, 2228 (2010).

Fig. 1. XRD patterns of SRCO and SRO films prepared at PO_2 = 1×10⁻⁴ Torr.

Fig. 2. Temperature dependence of resistivity of SRCO films prepared at $P_{O_2} = 1 \times 10^{-4} - 1 \times 10^{-2}$ Torr.