パルスレーザー堆積法を用いた REBO₃ (RE=Ca,Bi,La B=Fe,Mn,Fe_{0.8}Mn_{0.2})酸化物薄膜の作製と評価 Deposition and evaluation of REBO₃(RE=Ca,Bi,La B=Fe,Mn,Fe_{0.8}Mn_{0.2}) by Pulsed Laser Deposition method 日大理工,及川 貴大,渡部雄太,岩田 展幸,山本 寛

Nihon Univ., [°]Takahiro Oikawa, Yuta Watabe, Nobuyuki Iwata, Hiroshi Yamamoto E-mail: takahironokimochi@gmail.com

近年、電子の電荷とスピンを利用するスピントロニクスに関する研究が進められている。なかでも非常にユニークな巨大電気磁気(ME)効果に注目している。ME 効果とは、電界によって磁気的性質が変化、または磁界によって電気的性質が変化する現象のことである。^[1]我々は、極性,非極性層を持つ超格子構造に電界を印加し、磁性元素間の超交換相互作用の変化を生じさせることでME 効果の発現を期待している。本研究の目標は、Al,Ti を磁性元素にすることで電界誘起型強磁性体を作製することである。また、近年 LaAlO₃/SrTiO₃界面においては電子移動による電気伝導が報告されている^[2]。

今回、超格子作製への足掛かりとして REBO₃(RE=Ca,Bi,La B=Fe,Mn,Fe_{0.8}Mn_{0.2})と LaFeO₃(LFO) の二層膜をパルスレーザー堆積 (Pulsed Laser Deposition : PLD)法により作製を行ったので報告する。 界面が清浄な超格子構造を得るためには、所望のユニット数が成長するように照射パルス数を算 出して薄膜の成長速度を微調整する必要がある。そのため、RHEED 振動から LFO と REBO₃の成 膜速度比の算出を行った。

成膜に使用した基板には、SrTiO₃(STO)を用いた。基板の表面処理として、アセトン、エタノール 純水による超音波洗浄後、バッファードフッ酸による酸洗を行った。アニールを920°C、6 時間行った。 PLD 法により REBO₃ 薄膜の成膜を行った。基板温度は 670°C、成膜雰囲気は O₂、20Pa とした。ター ゲット上のレーザーエネルギー密度を 2.7J/cm²として KrF エキシマレーザーを 4Hz で照射した。成膜 中は RHEED (Reflection High Energy Electron Diffraction)装置を用いて成長過程をリアルタイムで観察し た。STO 基板上に REBO₃ 単層膜を成長させた後、XRD20-0 パターンから面間隔を算出した。次にそ の計算結果と、REBO₃ 成膜中の RHEED 振動から得られた成膜速度により、REBO₃ 薄膜を 1 原子 層成長させるのに必要なパルス数を決定した。REBO₃ 薄膜の膜厚が 50nm となるようにパルス数 を調整して REBO₃/LFO 二層膜の成膜を行った。

作製した REBO₃/LFO//STO 薄膜の XRD 結果から、NelsonReliy 関数により算出した格子定数は0.3725nm となった。また、X 線反射(XRR)測定から REBO₃ 薄膜の膜厚を算出した。Fig.1 にCaMnO₃ (CMO)薄膜の XRR 測定結果を示す。CMO に関しては想定膜厚 50nm(134unit)に対して、実際の膜厚は 49.95nm(134.090unit)となり、 誤差 0.1%と非常に高精度の成膜が行えたことがわかった。当日は CMO/LFO//STO 以外の二層膜についても報告する。なお、成膜はトゥエンテ大学・IMS グループにて行った。 4.参考文献 [1]Yoshito Tokura, Science vol.32 (2006)

[2]A.Ohtomo, H.Y.Hwang, Nature 427 (2004)

フィッティングにより見積もった CMO 薄膜の膜厚 は 49.95nm であり、想定膜厚に対して 0.1%の誤差 であった