金属とp型ダイヤモンドの接触抵抗の(111)面と(100)面の比較

The comparison between (111) and (100) of contact resistance for metal /p-type diamond

産総研¹. 筑波大学², 明治大学³, CREST⁴

○白田和也 ^{1,3,4}, **松本翼** ^{1,2,4}, 小倉政彦 ^{1,4}, 加藤宙光 ^{1,4},

牧野俊晴 1,4, 竹内大輔 1,4, 大串秀世 1,4, 山崎聡 1,2,4

AIST¹, Univ. of Tsukuba², Univ. of Meiji ³, CREST⁴

°Kazuya Shirota^{1,3,4}, Tsubasa Matsumoto^{1,2,4}, Masahiko Ogura^{1,4}, Hiromitsu Kato^{1,4},

Toshiharu Makino^{1,4}, Daisuke Takeuchi^{1,4}, Hideyo Okushi^{1,4}, Satoshi Yamasaki^{1,2,4}

E-mail: kazuya-shirota@aist.go.jp

ダイヤモンドは半導体材料として優れた物性値をもつことから、ダイヤモンドを利用してより 高効率なデバイスや、現在では実現できていない新しいデバイス開発にむけて、世界中で研究が 進んでいる。

半導体デバイスを機能させるうえで、金属とダイヤモンド半導体を結ぶ部分が必要であり、そ こで電力的な損失が発生してしまう。この損失の原因が金属とダイヤモンド半導体の界面に存在 する接触抵抗である。この接触抵抗を無視できるレベルにまで低減させ、デバイス特性を最大限 に活かすことが課題のひとつである。

そこで、本研究では金属と p 型ダイヤモンドの接触抵抗に注目した。p 型高濃度ドーピング薄 膜を用いた界面では、オーミック特性および低抵抗な接触抵抗が実現されている。さらに、p 型 低濃度ドーピング薄膜でも、金属と(100)面 p型ダイヤモンドにおいては、熱処理を適切に行うこ とでオーミック特性および低抵抗な接触抵抗が確認されている^[1]。一方、(111)面低濃度ボロンド ーピングダイヤモンドでは報告がなく、実際に実験をしてみると、オーミック特性を得ることが 容易ではなく、低抵抗な接触抵抗を得ることが困難であることが分かってきた。図1に電流電圧 特性を示す。熱処理温度に大きく依存していることがわかる。

本発表では、電流電圧特性を示し、面方位による違いから界面制御のメカニズムを探る。

参考文献

[1] Yigang Chen et al. Semicond. Sci. Technol. 20 (2005)

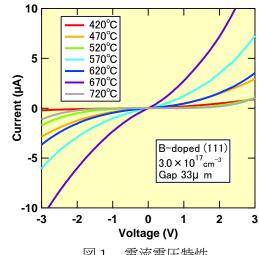


図 1 電流電圧特性