環元型酸化チタン粒子を用いた透明導電膜の作製

Fabrication of Hybrid Transparent Conductive Films with Nanosized Reduced Titanium Oxide

龍谷大理工1,プランクサイエンス2,兵庫工技セ3

○金子晋也¹,那須昌吾²,吉岡秀樹³,山本伸一¹

Ryukoku Univ.¹, Planckscience Corp.², Hyogo Pref. Inst. of Tech.³

^OS. Kaneko¹, S. Nasu², H. Yoshioka³, S.-I. Yamamoto¹

E-mail: shin@rins.ryukoku.ac.jp

<u>はじめに</u> 透明導電膜はフラットパネルディスプレイ、太陽電池、青色発光ダイオードなどで重要な役割を果たしている。透明導電膜は主に ITO(Indium Tin Oxide)が用いられている。しかし、ITO の主材料であるインジウム(In)が枯渇しつつあり、代替材料として透過率が高く、クラーク数の高い酸化チタン(TiO₂)が注目されている。一般的な成膜法には、スパッタリング法が用いられている。スパッタリング法の特徴として、高真空中で作製するため、膜質の良い薄膜が作製可能である。しかし、真空装置を用いるため高コストであり、プロセスも複雑化する。そのため、真空を用いない成膜方法の模索が重要である。本研究では、低抵抗である TiO_x(還元型酸化チタン粒子)を用いることで、低コスト・低抵抗な高品質透明導電膜を大気中で成膜することを目指した。

実験方法・結果 TiO_x をエタノールに 10 wt%で混合し、超音波洗浄機(38kHz)にて 10 分間攪拌することで溶液を作製した。基板上に溶液を滴下し、500rpm-5sec, 2000rpm-30sec の二段階で回転させ、乾燥炉で 150℃-10min 乾燥処理を行い、エタノールを揮発させることで、粒子堆積基板を作製した。その後、粒子堆積基板上に TiO_2 溶液(高純度化学社製)を滴下し、500rpm-5sec, 2000rpm-30sec で回転させ、150℃-10min 乾燥処理、300℃ ~ 600 ℃において熱処理を行い、薄膜を作製した。熱処理時の雰囲気は大気中、真空中(3.7×10^2 Torr)で行った。 Fig.1 に焼成温度の変化による抵抗率の変化を示す。 TiO_x + TiO_2 films(in air)は大気中で焼成しているため、焼成温度を高くするにつれて酸化し、600℃焼成では TiO_2 only(in Vacuum)と同程度の抵抗率となった。最も低抵抗化した薄膜は、真空中600℃焼成の時であった。抵抗率は 2.88 Ω ・cm となり、 TiO_2 のみの薄膜より 5 桁低い結果となった。Fig.2 に真空中で焼成した薄膜の XRD パターンを示す。焼成温度が上昇するにしたがって Ti_2O_3 が TiO_2 に変化していることがわかった。また、導電性に有利であるとされる Anatase 型ではなく Rutile 型に転移していることがわかった。

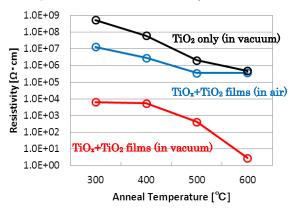


Fig.1 Variation of the resistivity of the TiO_x+TiO_2 thin films depending on annealing atmosphere. Temperature were varied from 300 to 600°C.

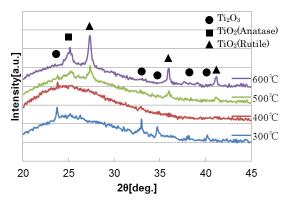


Fig.2 X-ray diffraction patterns of TiO_x+TiO_2 thin films depending on anneal temperature in Vacuum.