27p-G12-19

剥離した高配向熱分解グラファイトへの臭素添加の検討

Investigation of Br doping into exfoliated highly oriented pyrolytic graphite

芝浦工大¹, 超低電圧デベイス技術研究組合(LEAP)², ⁰今関 兼也¹, 小杉 諒佑¹, 若井 貴史¹,

宮崎 久生², 佐久間 尚志², 梶田 明広², 酒井 忠司², 上野 和良¹

Shibaura Inst. Tech.¹, LEAP², [°]K. Imazeki¹, R. Kosugi¹, T. Wakai¹,

H. Miyazaki², N. Sakuma², A. Kajita², T. Sakai², and K. Ueno¹

E-mail: ueno@shibaura-it.ac.jp

【はじめに】 集積回路に用いる Cu 配線においては、微細化に伴う抵抗上昇や信頼性の低下が問題となっている。多層グラフェン(MLG)は Cu に代わる配線材料として期待されているが、低抵抗な MLG 配線実現のためにはキャリアのドーピングが必須と考えられる。グラファイトイン ターカレーション(GIC)は、有効なドーピング方法として知られており、バルクの高配向熱分解グラファイト(HOPG)への臭素(Br)の GIC により大きな抵抗低減が報告されている[1]。 本研究では、MLG 低抵抗化の検討の一環として、剥離した HOPG への Br ドーピングを検討した。

【実験方法】 熱剥離シートにより機械的に HOPG(膜厚:約10µm)を剥離し、3mm 幅にカットして SiO₂ 基板上に転写した。次に試料をガラス管内に設置して約0.2 Pa まで真空排気した後、 飽和蒸気圧の Br に暴露時間を変化させて暴露した。評価として、四端子法による抵抗評価、ラマ ンスペクトルによる構造解析、XPS による Br 濃度の深さ分析を行った。

【実験結果】 Fig.1 に抵抗低減率を示すように Br 暴露時間の増加とともに抵抗が低下した。ま たラマンスペクトルでは Br 暴露時間とともに Br-GIC 固有のピークが高波数側へシフトし、ステ ージ数は約 3 と推定される [2]。また Fig. 2 に Br 濃度の深さ分布を示すように、時間とともに Br 濃度が増加した。Br 濃度は表面側で高く、Br が表面側から侵入していることが示唆される。 剥離 HOPG においてもバルク HOPG と同様に、Br 暴露時間とともにドーピング濃度が増加し、 抵抗低減につながったと考えられ、MLG の低抵抗化の方法として期待できる。

本研究開発は、経済産業省および NEDO の委託事業「低炭素社会を実現する超低電圧デバイスプロジェクト」にて実施した。

【文献】[1] S. Tongay et.al., Phys. Rev. **B 81**, 115428 (2010).

^[2] M. S. Dresselhaus et.al, Adv. Phys. 51, 156 (2002).